
编程语言简介
冯新宇
南京大学

编程语言发展历史

机器语言 汇编语言 高级语言

编程语言发展历史

Image from www.technolush.com

编程语言排名
 TIOBE 编程社区指数

 GitHub 开发者生态排名

定位：衡量语言全球讨论热度与搜索频率（基于Google、Bing、维基百科等引擎数据）

定位：基于全球最大代码托管平台的活跃仓库、开发者数量与企业采用率

 IEEE Spectrum

定位：基于Google教程搜索量，Python连续5年居首（初学者首选）

 PYPL（PopularitY of Programing Language）

定位：结合GitHub与Stack Overflow数据，JavaScript/Python/Java稳居前三

 RedMonk

内容由腾讯元宝（DeepSeek）生成

编程语言排名
 TIOBE 编程社区指数

定位：衡量语言全球讨论热度与搜索频率（基于Google、Bing、维基百科等引擎数据）

趋势洞察：
• AI赋能循环：
Python因AI工具支持（如Copilot）进一步

扩大优势
• 保守技术回流：
VB/Delphi因旧系统维护需求逆势上升

• 安全语言崛起：
Rust（第18位）因内存安全受

Linux/Windows驱动项目青睐

排名 语言 占比 趋势变化 关键驱动因素

1 Python 26.14% ↑8.10% (历史新高) AI编程助手普及（效率提升20%）

2 C++ 9.18% ↓0.86% 游戏/嵌入式高性能需求

3 C 9.03% ↓0.15% 操作系统/驱动开发基石

4 Java 8.59% ↓0.58% 企业级后端与Android生态

5 C# 5.52% ↓0.87% Unity游戏与.NET跨平台

6 JavaScript 3.15% ↓0.76% 全栈Web开发（TypeScript辅助）

7 Visual Basic 2.33% ↑0.15% 旧系统维护需求

8 Go 2.11% ↑0.08% 云原生（K8s/Docker）

9 Perl 2.08% ↑1.17% (最大黑马) 文本处理与历史脚本复兴

10 Delphi/Object
Pascal 1.82% ↑0.19% 工业控制软件升级

2025年8月前十排名：

内容由腾讯元宝（DeepSeek）生成

编程语言排名
 GitHub 开发者生态排名

定位：基于全球最大代码托管平台的活跃仓库、开发者数量与企业采用率

排名 语言 活跃仓库占比 年度增长 核心应用场景

1 Python 21.8% +5.7% AI/数据科学（PyTorch/TensorFlow）

2 JavaScript 19.3% -1.2% Web全栈（React/Node.js）

3 Java 12.1% +0.8% 企业级后端（Spring Boot 3.x）

4 TypeScript 11.7% +18% 工程化前端与后端渗透

5 C# 8.5% +3.1% 游戏（Unity）/.NET云服务

6 Go 6.9% +12.4% 云原生（K8s/Docker）

7 Rust 4.3% +31% 系统安全（Linux内核集成）

8 PHP 3.8% -4.5% 传统Web（Laravel生态收缩）

9 Kotlin 3.5% +9.2% Android开发与协程架构

10 Swift 2.7% +6.8% 苹果生态（Vapor服务端框架）

2024年综合影响力前十：

趋势洞察：
• 类型系统普及：
TypeScript增长迅猛，推动JS大型项

目健壮性

• 云原生主导：
Go在CNCF项目中占比61%（如

Kubernetes）

• 安全刚性需求：
Rust增速最快，关键基础设施采用率

飙升至22%

内容由腾讯元宝（DeepSeek）生成

为什么会存在这么多编程语言？

什么样的语言是好的语言？
或者：评价一个语言关心哪些方面？

编程语言领域有哪些新的发展？

为什么会存在这么多编程语言？

程序设计语言：人与计算机交流的语言

交流的内容：计算、通信、世界的建模 …
描述计算有不同的模型
计算任务的多样性：AI、图形动画、数据处理、科学计算（天气预报、仿真）

交流的对象
人：简单、高效、正确的表达自己的计算任务，有较强主观性

机器：用尽量少的时间和资源（内存、能耗等）
完成计算任务

编程语言要解决的3个核心问题：效率、性能、安全

main() {
print("Hello World")

}

编程语言：表达人类（计算）思维，程序易写易读

机器语言：硬件只能理解二进制表达

编译器

效率：如何让程序写得快、易理解

性能：如何让程序跑得快、消耗资源少

安全：如何让程序写得对、运行中不出错

自动翻译
安全

效率 性能

难以兼顾
需要取舍

开发态 运行态

Huawei Confidential10

语言的分类：应用场景视角

开发
效率

C++

C
Rust

JSPython
Lua

Java

Go

Swift

Kotlin

轻量业务开发
 动态脚本语言

重业务开发
静态类型App开发语言

性能

系统编程

注：此图仅为示意三类语言的划分，并不追求各种语言在坐标中位置的准确性

Dart

安全

Ruby
安全

效率 性能

难以兼顾
需要取舍

Huawei Confidential11

开发
效率

C++

C
Rust

JSPython
Lua

Java

Go

Swift

Kotlin

轻量业务开发
 动态脚本语言

重业务开发
静态类型App开发语言

性能

系统编程

注：此图仅为示意三类语言的划分，并不追求各种语言在坐标中位置的准确性

Dart

安全

Ruby

动态脚本语言：
串珠子的绳子

代码量小、快速编写、解释执行

易学易用、不追求安全、不追求性能

语言开发容易，种类繁多

语言的分类：应用场景视角

https://www.zhihu.com/question/29823322

Huawei Confidential13

开发
效率

C++

C
Rust

JSPython
Lua

Java

Go

Swift

Kotlin

轻量业务开发
 动态脚本语言

重业务开发
静态类型App开发语言

性能

系统编程

注：此图仅为示意三类语言的划分，并不追求各种语言在坐标中位置的准确性

Dart

安全

Ruby

动态脚本语言：
串珠子的绳子
代码量小、快速编写、解释执行

易学易用、不追求安全、不追求性能

系统开发语言：

极致性能
与底层系统的对话能力
开发者能力强

语言开发容易，种类繁多

语言的分类：应用场景视角

Huawei Confidential14

开发
效率

C++

C
Rust

JSPython
Lua

Java

Go

Swift

Kotlin

轻量业务开发
 动态脚本语言

重业务开发
静态类型App开发语言

性能

系统编程

注：此图仅为示意三类语言的划分，并不追求各种语言在坐标中位置的准确性

Dart

安全

Ruby

静态类型App开发语言

面向开放场景，追求应用生态：吸引开发者

代码规模较大，追求性能、安全与易用性的平衡

静态类型、类型安全、自动内存管理

安全

效率 性能

难以兼顾
需要取舍

三者的取舍取决于动态/静态的选择

语言的分类：应用场景视角

Huawei Confidential15

语言的分类：从动-静态技术选型的视角看

开发
效率

C++

C
Rust

JSPython
Lua

Java

Go

Swift

Kotlin

轻量业务开发
 动态脚本语言

重业务开发
静态类型App开发语言

性能

系统编程

注：此图仅为示意三类语言的划分，并不追求各种语言在坐标中位置的准确性

Dart

安全

Ruby

类型检查：动态 vs. 静态

动态 静态

效率 约束少，表达力强 约束强、规则
保守

性能 • 运行时类型检查
• 难以静态优化

编译器可获得
更多信息指导

优化

安全 易写难读，“编码一
时爽，重构火葬场”

编译期发现错
误

内存管理：动态（GC） vs. 静态

动态 静态

效率 开发者无感知/
少感知

对内存的使用更严格
遵循某种模式，学习

使用成本高

性能
• 运行时开销
• 非确定性时

延

零成本抽象
更固定的内存使用模
式带来更多编译优化

安全 内存安全 内存/并发安全

类型：动态  静态

内存管理：动态  静态

Huawei Confidential16

开发
效率

C++

C
Rust

JSPython
Lua

Java

Go

Swift

Kotlin

轻量业务开发
 动态脚本语言

重业务开发
静态类型App开发语言

性能

系统编程

注：此图仅为示意三类语言的划分，并不追求各种语言在坐标中位置的准确性

Dart

安全

Ruby

类型：动态  静态

内存管理：动态  静态

????：动态  静态

更精化的类型：
上三角矩阵？对角线矩阵？

下标越界检查？
入参合法性检查？
静态contract？

编程语言
研究关注
的方向 Worse is better?

语言的分类：从动-静态技术选型的视角看

语言的分类：从动-静态技术选型的视角看

语言的分类：按计算模型和编程风格

函数式语言

命令式（过程式）语言

面向对象（OO）语言

逻辑式语言

函数式 命令式

OO

语言的分类：按计算模型和编程风格
函数式语言：通过函数和函数的组合完成计算

>>> map([1, 2, 3], add_one)
[2, 3, 4]

语言的分类：按计算模型和编程风格
函数式语言：通过函数和函数的组合完成计算 计算模型：λ-演算（Lambda-演算），

由Church在20世纪30年代提出

Alonzo Church (1903–1995)

经典函数式语言

LISP, 1958

ML, 1973

Haskell, 1990

语言的分类：按计算模型和编程风格
命令式（过程式）语言：编排命令序列，逐步修改机器状态，完成计算

int mylist[] = {1, 2, 3};

int length = 3;

for (int i = 0; i < length; i++){

mylist[i] = mylist[i] + 1;

}

1 2 3

按照特定过程
修改机器状态

经典的命令式（过程式）语言：Algol (1958), BASIC (1964), Pascal (1970), C (1972) …

计算模型：图灵机（图灵1936年提出）

Alan Turing,
1912 - 1954

语言的分类：按计算模型和编程风格
命令式（过程式）语言：编排命令序列，逐步修改机器状态，完成计算

int mylist[] = {1, 2, 3};

int length = 3;

for (int i = 0; i < length; i++){

mylist[i] = mylist[i] + 1;

}

add_one = lambda x: x+1

map([1, 2, 3], add_one)

1 2 3

按照特定过程
修改机器状态

命令式 和 函数式 的对比： [1, 2, 3]

[2, 3, 4]

add_one

语言的分类：按计算模型和编程风格
命令式（过程式）语言：编排命令序列，逐步修改机器状态，完成计算

long factorial(int n)
{
int c;
long result = 1;

for (c = 1; c <= n; c++)
result = result * c;

return result;
}

C:

命令式 和 函数式 的对比：

factorial 0 = 1
factorial n = n * factorial (n - 1)

Haskell

数学定义：

fact(n) =

1 if n = 0

n * fact(n-1) if n > 0

语言的分类：按计算模型和编程风格
面向对象语言：命令式的一种，数据（属性）和计算（行为）的封装

Berkeley CS61a courseware

语言的分类：按计算模型和编程风格
面向对象语言：命令式的一种，数据（属性）和计算（行为）的封装

Berkeley CS61a courseware

语言的分类：按计算模型和编程风格
面向对象语言：命令式的一种，数据（属性）和计算（行为）的封装

经典的面向对象语言：

Simula 67 (1967), Smalltalk (1972), C++ (1980), Java (1995)

最初的动机：科学仿真

语言的分类：按程序执行方式

？？

如何让计算机理解并执行程序？

语言的分类：按程序执行方式

如何让计算机理解并执行程序？

静态编译型

动态解释型

字节码型（二者结合）

如何让计算机理解并执行程序？
对比现实生活中对自然语言的翻译

现场逐句翻译
（慢，但方便修改）

听众

现场翻译

提前翻译（如电影的翻译和配音）

提前翻译、配音
整部电影

向观众发布
整部电影

语言的分类：按程序执行方式

编译器

运行

静态编译型

优点：优化容易，执行速度快

开发 发布

缺点：代码难以动态修改

语言的分类：按程序执行方式

解释器/虚拟机

动态解释型

运行

a = 1
b = 2
c = a + b
print(“Hello, world!”)

a =1

b =2

c = a+b

a = 1
b = 2
c = a + b
print(“Hello, world!”)

开发 发布 运行

优点：写完马上可以执行，无需编译，方便修改

缺点：执行速度慢（没有事先优化）

语言的分类：按程序执行方式

字节码型

编译器

解释器/虚拟机

运行
开发 发布 运行

优缺点：介于编译型和解释型之间

语言的分类：按程序执行方式
公众号“码农翻身”：《字节码万岁！！！》

为什么会存在这么多编程语言？

什么样的语言是好的语言？
或者：评价一个语言关心哪些方面？

编程语言领域有哪些新的发展？

什么样的语言是好的语言？

简单、高效、正确的
表达自己的计算任务

用尽量少的时间和资源（内存、
能耗等）完成计算任务

语言设计关注什么？

良好的抽象：
关注业务逻辑，隐藏实现细节
高阶函数

多态：泛型、继承、重载

模块化封装和信息隐藏

可组合性：

数据的组合：复合数据类型的定义

由基本元素构造复合元素的能力

控制的组合：函数、协程、actor等

正确性/安全性：

动态检查：如下标越界检查
静态类型安全

程序性能：

例如：并行计算、异构编程等
充分发挥硬件能力

语言设计关注什么？

安全

易用性 性能

类型安全：动态（牺牲性能）/静态（牺牲易用性）
内存安全：垃圾收集（牺牲性能）
动态检查：下标越界、数值溢出（牺牲性能）

动态类型：牺牲安全、性能
自动内存管理：GC/RC，牺牲性能
动态派遣: 牺牲性能

指针算数运算、类型转换：牺牲安全
手工内存管理：牺牲安全、易用性
ownership和生命周期机制：牺牲易用性

难以兼顾
需要取舍

抽象能力
隐藏无关细节，专注于特定问题本身

具体 抽象

抽象能力

声明式编程：
描述想要什么（what）

过程式编程：
描述如何才能达到想要的效果

int mylist[] = {1, 2, 3};

int length = 3;

for (int i = 0; i < length; i++){

mylist[i] = mylist[i] + 1;

}

add_one = lambda x: x+1

map([1, 2, 3], add_one)

抽象能力

高阶函数： add_one = lambda x: x+1

map([1, 2, 3], add_one)

泛型：

模块化和可复用性 —— 信息隐藏

v.s.

模块化和可复用性 —— 信息隐藏
• 对象的封装：private/protected/public
• 抽象数据类型
• 模块系统

模块化和可复用性 —— 信息隐藏

• 对象的封装：private/protected/public
• 抽象数据类型
• 模块系统

当实现发生改变时，使用者不需要相应做修改

正确性和安全性

限制编程的自由度，以减少出错的机会

结构化编程
if-then-else, loops, function calls, exceptions …

Edsger W. Dijkstra

one:
for (i = 0; i < number; ++i){
test += i;
goto two;

}

two:
if (test > 5) {
goto three;

}
...

正确性和安全性 —— 类型系统

• 各种规则约束的表达
• 及时发现各种程序错误
• 类型安全、内存安全等

int* x, y, z;
int o = 4;
…
z = x + y;
z = o + “123”;




动态类型 静态类型

强类型

弱类型

JavaScript

Python Java、Rust

C, C++

弱类型：难以保证安全性。新的语言中很少采用

正确性和安全性 —— 类型系统

• 各种规则约束的表达
• 及时发现各种程序错误
• 类型安全、内存安全等

• 静态类型检查 vs. 动态类型检测
• 原则：越在开发的早期发现问题，

解决问题的代价越小
• 静态类型：编译时做类型检查

• 典型案例：Java, Rust, Typescript
• 动态类型：运行时做类型检查

• 典型案例：Python

动态类型 静态类型

强类型

弱类型

JavaScript

Python Java、Rust

C, C++

弱类型：难以保证安全性。新的语言中很少采用

类型检查：动态类型 vs. 静态类型

if (x > 0):
y = “hello”;

else:
y = 3;

if (x > 0):
z = y + “world”;

else:
z = y + 4;

int factorial(int n)
{
int c;
int result = 1;

for (c = 1; c <= n; c++)
result = result * c;

return result;
}

“hello, world” + 123

factorial(“hello”);





？？？

？？？

静态类型报错，动态类型不
报错，在运行时做类型检查

f(x)

g(x)

f(x) > 0 iff g(x) > 0 ???

类型系统研究
表达力/
自由度

易学习
易上手

程序
安全性

代码可读性/
可维护性

动态类型 + + - -
静态类型 - - + +

POPL 2015 - 2021

语言的实现

• 高性能运行
• 编译器、虚拟机/解释器、字节码、JIT、运行时和垃圾收集等
• 关注特性：性能、内存消耗、能耗、实时响应等

• 编译时长

• 编译得到的二进制/字节码文件的大小

什么样的语言是好的语言 —— 其他因素

• 丰富、易用的库函数和编程框架

• IDE

• 测试工具和框架

• 调试

• 模块/包管理

• …

编程语言的构成 —— 狭义和广义

标准
库

工具链

IDE
调试器
包管理
中心仓

代码扫描
性能调优

…

开发框架
UI/数据库/分布式

…

三方库
音视频/加解密/XML解

析/…

语言定义（Spec）

编译后端 运行时

应用开发

编译前端

构建一个工业级编程语言
是一个庞大的系统工程！

为什么会存在这么多编程语言？

什么样的语言是好的语言？
或者：评价一个语言关心哪些方面？

编程语言领域有哪些新的发展？

为什么新的语言不断出现？

Java：每6个月一个新版本

PPT from: Java Language Features – Late 2019 Edition
Brian Goetz, Java Language Architect

语言需要不断演进

语言的一些发展趋势（1）

• 多范式编程：函数式编程和面向对象编程的融合
• OCaml (1996), Scala (2003)
• Python, Javascript
• C++11, Java 8 (2014)：增加lambda机制
• Rust (2010), Kotlin (2011), Dart (2011), Swift (2014)等新语言

OO

FP
所有编程语言的

核心任务

语言的一些发展趋势（2）

• 更加注重安全
• Null safety: non-nullable

• 告别空引用异常
“Null References: The Billion Dollar Mistake”

- Tony Hoare

var a: String = "abc"
a = null // 编译错误
val l = a.length // ok, a必然不会是null

var b: String? = "abc" // can be set null
b = null // ok
val l = b.length // 编译错误, b可能是null
val l = if (b != null) b.length else -1 // ok

语言的一些发展趋势（2）

• 更加注重安全
• Null safety: non-nullable

• 告别空引用异常

• 动态类型语言中引入静态类型检查机制
• 能够在写程序的时候尽量多的发现错误
• Typescript
• Python type hints

“Null References: The Billion Dollar Mistake”
- Tony Hoare

def greeting(name: str) -> str:
return 'Hello ' + name

def f(x, y):
if x >100:
return x

else
return x + y

def g(): // 静态类型报错
return f(100, “123”)

>>> g() // 动态类型报错

语言的一些发展趋势（2）

• 更加注重安全
• Null safety: non-nullable

• 告别空引用异常

• 动态类型语言中引入静态类型检查机制

• 可信系统编程语言
• C++安全特性持续增强
• Rust
• Verona：微软开发中

“Null References: The Billion Dollar Mistake”
- Tony Hoare

https://github.com/microsoft/verona

语言的一些发展趋势 – 学术前沿（1）

• 面向特定领域的语言设计和实现
• 机器学习
• 概率编程
• 量子编程
• 网络编程
• 并行、并发、分布式编程

语言的一些发展趋势 – 学术前沿（2）

• 语言的形式化语义和程序的形式化验证
• 用数学方法来理解和研究程序的行为
• 能否证明一个程序一定是正确的？

Testing shows the presence, not the
absence of bugs.

Edsger W. Dijkstra

编程语言发展趋势

ISWIM语言（族）：

1）嵌套结构和缩进；
2）函数作为一等公民、lambda表达式
3）赋值和控制流语句相关的命令式语言特性

Peter Landin

[CACM 9(3), 1966]

[LNCS, vol. 10,000, 2019]

Darwinian evolution in the context of programming languages …

气候变化  硬件/基础设施的变化 语言的兴衰/进化

区分看待物种（完整语言）的成功和基因（语言概念和特性）的成功

共生体对物种繁荣的贡献  库/工具对语言生态的贡献

编程语言发展趋势

[LNCS, vol. 10,000, 2019]

趋势预测：

1. 安全系统编程：新语言（Rust）、C/C++安全增强（包括软硬件结合技术）等
2. Gradual typing融合动态类型、静态类型、程序验证等特性
3. 并行编程：难以统一，反而可能更加碎片化
5. 语言与软工工具的深度结合

4. 语言对分布式容错编程的支持（类似Erlang）
6. 程序合成和AI对IDE工具的改进

（但难有大的突破）

编程语言发展趋势

大模型时代，是否还需要编程语言？

In order to make machines significantly easier to
use, it has been proposed (to try) to design
machines that we could instruct in our native
tongues. this would, admittedly, make the
machines much more complicated, but, it was
argued, by letting the machine carry a larger share
of the burden, life would become easier for us. It
sounds sensible provided you blame the
obligation to use a formal symbolism as the
source of your difficulties. But is the argument
valid? I doubt.

为了让机器更"易于使用"，有人提议设计能听懂
自然语言的计算机——这样固然会让机器系统变
得更复杂，但支持者认为，让机器多分担些工作，
人类就能轻松许多。乍听之下挺合理，前提是你
真把"必须使用形式化符号"当作麻烦的根源。但
这种论调站得住脚吗？我深表怀疑。

The virtue of formal texts is that their manipulations,
in order to be legitimate, need to satisfy only a few
simple rules; they are, when you come to think of it,
an amazingly effective tool for ruling out all sorts of
nonsense that, when we use our native tongues, are
almost impossible to avoid.

形式化文本的精妙之处在于：其操作过程只需遵守
少量简单规则即可确保合法性。细想之下，这实在
是种惊人的高效工具——它能剔除各类荒谬错误，
而这些错误在我们使用自然语言时几乎无可避免。

On the foolishness of “natural language programming”
论"自然语言编程"的愚蠢
Edsger W.Dijkstra, EWD667, 1978

https://zhuanlan.zhihu.com/p/1895989957333607441

My guess is that a hundred years from now people will
still tell computers what to do using programs we
would recognize as such. There may be tasks that we
solve now by writing programs and that in a hundred
years you won't have to write programs to solve, but I
think there will still be a good deal of programming of
the type we do today.

“Hackers & Painters”, Paul Graham, 2003

大模型时代编程语言思考

大模型时代，自然语言会不会取代编程语言，或者成为新的编程语言？
不会，但形态可能会发生变化

编程语言的双重属性：人-机交流和人-人交流

编程语言作为一种无二义性的数学语言，是软件工程师交流的
重要媒介，是软件资产/智力资产的重要承载工具

编程语言之于软件，类似于数学之于（自然）科学

人
机
交
流

人人交流

大模型时代编程语言思考

编程语言之于软件，类似于数学之于（自然）科学

科学家足够智能，对自然语言使用和理解无碍，
但仍然需要数学作为表达和交流的工具

编码 单元测试 代码审核 集成测试 重构与演进…

需要人来读代码

代码不会消失，编程语言就不会消失，但编程语言的形态可能会发生变化

语言设计现状：强调易写易读，很多时候易写 > 易读

大模型时代：代码生成代价变小，但审核/验证变得重要，易读 >> 易写
我们需要让程序更容易审核/
测试/验证的编程语言

	编程语言简介
	编程语言发展历史
	编程语言发展历史
	编程语言排名
	编程语言排名
	编程语言排名
	幻灯片编号 7
	为什么会存在这么多编程语言？
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	经典函数式语言
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按程序执行方式
	语言的分类：按程序执行方式
	幻灯片编号 30
	语言的分类：按程序执行方式
	语言的分类：按程序执行方式
	语言的分类：按程序执行方式
	语言的分类：按程序执行方式
	幻灯片编号 35
	什么样的语言是好的语言？
	幻灯片编号 37
	幻灯片编号 38
	抽象能力
	抽象能力
	抽象能力
	模块化和可复用性 —— 信息隐藏
	模块化和可复用性 —— 信息隐藏
	模块化和可复用性 —— 信息隐藏
	正确性和安全性
	正确性和安全性 —— 类型系统
	正确性和安全性 —— 类型系统
	类型检查：动态类型 vs. 静态类型
	类型系统研究
	语言的实现
	什么样的语言是好的语言 —— 其他因素
	编程语言的构成 —— 狭义和广义
	幻灯片编号 53
	幻灯片编号 54
	语言的一些发展趋势（1）
	幻灯片编号 56
	幻灯片编号 57
	语言的一些发展趋势（2）
	语言的一些发展趋势（2）
	语言的一些发展趋势（2）
	语言的一些发展趋势 – 学术前沿（1）
	语言的一些发展趋势 – 学术前沿（2）
	幻灯片编号 63
	幻灯片编号 64
	幻灯片编号 65
	大模型时代，是否还需要编程语言？
	幻灯片编号 67
	幻灯片编号 68
	幻灯片编号 69
	幻灯片编号 70
	幻灯片编号 71

