QH:H*E'M: ;fl_aﬁ/\

IE_IJ:T):I: -
FARAF

Machine Language
00100101 11010011
00100100 11010100
10001010 01001001 11110000
01000100 01010100
01001000 10100111 10100011
11100101 10101011 o00O0O0OO1O0

00101001
11010101
11010100 10101000
10010001 01000100

MeES

fmizia = & REHSE

Assembly Language
ST 1,[801]
ST 0,[802]

TOP: BEQ [802],10,BOT
INCR [802]

BOT:

MUL [801],2,[803]
ST [803],[801]
JMP TOP

LD A, [801]

CALL PRINT

iLImE=

20¢
TV Y

A Simple C Program

/* This is the sample program to print a
message hello world. This is done by
course teacher */

#include <stdio.h>

#include <conio.h>

main ()

{

clrscr();
printf(“Hello World\n”);
getch() ;

BRES

==

1951

‘l‘:

1960

1961

1970

T

T

[== 1951- Assembly Language

=

1963 - CPL

1964 - BASIC

1969 - B

1970 - Pascal

%] 1959 - COBOL

1957 - Fortran

1958 - Lisp

1962 - Simula

1962 - SNOBOL

1964 - PLI/I
1967 - BCPL

{)

TRIE SRR

Image from www.technolush.com

1972 - Smalltalk 1972 - C =]
[== 1972- Prolog 1973 - ML
1978 - SQL 1975 - Scheme

[= | 1980-Cs+ =

1983 - Ada

[~ 1984-Common LISP

1985 - Eiffel

[= 1986 - Objective C

1983- C++ Renamed =~ %]

1984 - MATLAB

1984 - FoxPro

1986 - Erlang

1990 - Haskell 1987 - Perl

1991

}
2000
=
1971
!
1980
=
=1
=
1981
}
1990
=
20
~ =
=]

[-= 1991-Python

1993 - R

1995 - Ruby

1995 - Javascript

1995 - Php

2002 - Scratch

2003 - Grovy

2009 - Go

2010 - Rust

2011 - Kotlin

2014 - Swift

1991 - Visual Basic

1993 - Lua =]

1995 - Java

1995 - Delphi == |

2000 - ActionScript =
2001
2001-C# =] !
2010
2003 - Scala

2007 - Clojure = |

201
2011-Dart =] }

Evolving

IRiEls = HF
> TIOBE et XEEK

M HEIESENTERAESHEEIR (E7TGoogle, Bing. H#EFRSS|ZEUR)

> GitHub FAZESHA
TN BETeREXBAEFarEREE. FREHESTEIRAXR

> |EEE Spectrum

» PYPL (PopularitY of Programing Language)
B EFGoogleHiFERE, PythonEESFREE (WIFEEIER)

» RedMonk
Ef: 5 GitHub5SStack Overflow#4E, JavaScript/Python/JavafafEai=

RZHETTE (DeepSeek) 4R

RIEIE = HFS

> TIOBE {RiEtt X524

N BEESEITICHESEERIE (EFGoogle, Bing. £ eSS
202558 HAITHFA:
He= BE= =]nd HEHTH KEIRENE =R
1 Python 26.14% 18.10% (HSL#e) ARIEENFE R (HERIEFH20%) SESEE -
2 C++ 9.18% 10.86% R/ BRI S HERE R K * AINEEETETA :
3 C 9.03% 10.15% BERG /RN EER ;;@;‘EO’Q.A'I i52#5 (WiCopilot) #—2
4 Java 8.59% 10.58% IR iR S Android 47 (RFEARRLR:
5 C# 5.52% 10.87% Unity #5345 NETEEE & .\géggg%?%ﬂﬁp BRES L
6 JavaScript 3.15% 10.76% £ WebF%& (TypeScriptisEf) Rust (518(u) RARFELZES
7 Visual Basic 2.33% 10.15% IRRGHEPTER Linux/Windows3X=hIE &kk
8 Go 2.11% 10.08% =B (K8s/Docker)
9 Perl 208% 11.17% (RKES) NAEES RS
10 Delph/OBect 4 gaq, 10.19% TR

RZHETTE (DeepSeek) 4R

RIEIE = HFS

> GitHub FFAZEESHEZ
B ET2BeEXEItEEENEHKeE. FAEHES W RAR
2024F 42 G5BT

HE= = EABESEE FEEK ON TSR
1 Python 21.8% +5.7% Al/EEERIZ (PyTorch/TensorFlow) SR
- REIRFER:
2 JavaScript 19.3% -1.2% Web#£#% (React/Node,js) TypeScripttZiTiE, H#ah) SATILR
i\ y
3 Java 12.1% +0.8% IR (Spring Boot 3.x) SL i
4 TypeScript 11.7% +18% TrEHRIRSERSE - ZREES:
(o)
5 C# 8.5% +3.1% Wk (Unity) /.NET=IRSS GOECNCFIEHE61% (4
_ Kubernetes)
6 Go 6.9% +12.4% =R4E (K8s/Docker)
7 Rust 4.3% +31% EFLe (LinuxPatZEErg) - RLNEER:
8 PHP 3.8% -4.5% f&%Web (Laravelt=75Uass) RUSHERER, CRERAMIIER B
FHZE22%
9 Kotlin 3.5% +9.2% Android R SNFELEE
10 Swift 2.7% +6.8% EERAR (VaporRSIHiEse)

REHETTTE (DeepSeek) 4R

At ARTFHEX LS

T4k

=
(i}

a1 —

e

O s/F=—
Flo =S

?

AR AY A

S RAFAES?
AL T
| 'Ta =

FINFRLE 75

i ASTER A S IRES?

7

SSREOME: HEL S, t
AL R SR

FFIRINES . ASITEYAGRANES

T EESHISH

7

EME: Al B

A: R R, R
Smodg
%: FAREBOMMERAR (WE. 85ES)

'ﬁJ%E’\J@E

FeeEl 2R

S 2HNITRESS, 1

Seh T EESS

2. ®ErE (RAk. (AE)

SESGIEE

E X

RISES: RAAX (1) B4, EFS55E

print("Hello World")

L TmiEEs BaEhE
-

ooaF = BEIRMR B4Rk
NEBES: U RAEM HEIFTL
Machine Language
00100101 11010011
00100100 11010100
10001010 01001001 11110000
01000100 01010100
01001000 10100111 10100011
11100101 10101011 00000010
00101001
11010101
11010100 10101000
10010001 01000100

MIEla o= 2R Y 3 M /LA

WE: NILEFSER. ZEE
#6E: WENLEFEER. BRERRD
Z2: WEEFSEN. BITHALE

RELAFRITG
RS

E=1I0E: NAmSENM

zEWSHE
SHANES
& , ELSAR .
BE] python o BSRBApPTTRTES
OOOLua /" Kotlin
Rub ® Ot
Y D.t ®)ava W §
//, ar ® /,/
Go
,/'/ ’ OC++
® Rust EGIIE
oC
TEge
O O >
Z2

iE: ERATE=RESHNSD, ARERSMESELTRPUENERME

RIS
ENE

B — &R

V2 HUAWEI

A S —— SNje A
Iegyds<. N) = AL
FBWVSHE
SHAES
i , BAVSHE
BE] python o BSLBAPPHTRIES
OOO Lua / Kotlin
Ruby ° ‘Ja:a ® Sift
Dart P
Go
,,//OC++
® Rust RIS
ST oF
T4EE
@ O N
=

iE: ERATE=RESHNSD, ARERSMESEL R ENERE

SHAES:
BRILFRIBET
REEE/N. RER
2FZH. ~E

REASZ, M

. ERAAT

4

— - m w

5
RLZE, NEKIERE

typeof Nal

& "number"

9999999999999999

© leoeoeoeeoeeoeeeee

8.5+06.1==0.6

“ true

8.1+6.2==0.3

- false

Math.max()

¢ -Infinity

Math.min()

¢ Infinity

N

I

1|91||

N

- 9@

I

true==1

true

true===

false
('+[]+[]+!'[]1)-1length
S

> Lo B

91_ " l"

[1==

¢ true Thanks for inVenting Javascript

true+true+true===3 2

- true

true-true

< -

I

[1+{} ' A F

"[object Object]™
{}3+[]

)

https://www.zhihu.com/question/29823322

BR =R AN EHRERE (k7o) SWEAFEEE

ATERE RIHES Python #HE Python AJ7]

Python Bf+AA A AFIAIR?
BGERE—T, AASAREREPython, E5L FBAIEEAPythonf{IiE, MBEMEZEEPythoniX
tepfiar 5, BEAAERCH+HDelphi7..B7250 v

(e

o2 R] & T 131 @ AREE 7o

73 MEIE B ©
wT] bR tfF

(2] TA0S: CREEIRE SAITEANE

2,360 A% TIRERE

Z51ERIFNRFRTERR “Kin” 7, EHEXE—ERMIIERH. ...

THNE— U —EHYEANEHER, NRRENEIWEITE TERS, BEREE
XEEAESHIRAAIER.

ISR NS

HASHIAES SHIAES
;:Fa . |] 1 / Eﬂ%ﬁ& \ N E)JIL‘J\HH]ZIS.LI:II:I .
BWE! python S/ B EBAPPFTRIES BRI FHET
0%CLa / Kotlin RIBE/. RERS. BT
Ruby 0 @ @ swift SERA. NEREZS, FERIHE
Dart o BEAESS, MxEs
//OC++ z \gﬁﬁﬁig%_:
® Rust HHHIS REERE
o C SEERFHIASELE
FEEEE
tge
@ O ‘—;
=z2

E WEATESRESINS, FRERE IS AR R B V2 HUAWEI

1BESHIDE:

NS SN

PSR BApPHRIES

zESHA
SSHIZANES
Y] BIWSHE
BE] python o HSRBAPPFRIES
OOO Lua Kotlin
Rub ® 0,
Y @ 9 Swift
Dart P
y Go
S OC++
® Rust EHRE
. () C
(3
@ O N
Z

iE: ERATE=RESHNSD, ARERSMESEL R ENERE

HEFDS, BXNAES: R5FAE
RBNIERK, 1BXERE. TES5Z AR
oRE, XEiRe, BiRFER

I =

7L

XELAFRS

ot \
= B

=ENINSEINRF NS/ FHSAERE

/

W

&

o

\ E— /\\ Z . — i S N\l | L) . -
EE= N < O B 0 59 it | s == F
XKENEE: IS vs. S
XKE: IO 8BS
== i}]ﬁ %ﬁ:u
sEWSESHE /

, + | G
* S ESKERIAPP T EIES 2 eE ATk
Python & BHSRSEAPPITRIG S mndsenan | SRIERSAIIATS
590LE Kotlin gy |; EOHEIRE e

; ® 0.,
Ruby /' @ @)us OWift T mmem ans o @ we | PORE, HE— | WEHELE
/ Dart g =E | M SEAEE i
Go
“OC+s WIFEE: B8 (GC) vs. 55
® Rust ZEFRRFE s S
C

SRR S
g | TRIERA | ammmm,

. [EERAS

T48E SEITASFFI SRR
° o o2 ERENR | EEENAEERE
24 5E R RES A

i WBEXATRE=RESHND, FREKRZIMESERRPAIEAYERME i"'zé WEFRS WiF/HERES

I5SHI33R . MB-FHESINIZE

RE: T > B

RS

S
L

wIZES

-t
=]

IH:

fRFE
7S > &S oY1)

BFEWSHA
SHIAES
Hi , BIWSHE
3‘&’3{‘3 Python o //I ﬁ%ﬁ‘ﬁ%’é’_ﬂAppﬁﬁiﬁ%
o OO0 Lua Kotlin
/// . . 1
Ruby /@ ®ava Swift | e e
/ Dart P
y Go
OC++
® Rust EHHE
® C
T
@ O N
3

iE: ERATE=RESHNSD, ARERSMESEL R ENERE

N

SRR

E=F1E0%E? XIRLIERE?
TREFRE?
ASHEHEE?

g5 contract?

Worse is better?

V2 HUAWEI

'L|:||:| I‘J

7335 Mal-sSHEANEEIEE

Papl @rapey
HACKERS

AND
PAINTERS

Seat Belts or Handcuffs?

The biggest debate in language design is probably the one between
Those who think that a language should prevent programmers from

doing stupid things, and those who think programmers should be

allowed to do whatever they want. Java is in the former camp, and Perl

in the latter. (Not surprisingly, the DoD is big on Java.)

Advocates of static typing argue that it helps to prevent bugs and
helps compilers to generate fast code (both true). Advocates of
dynamic typing argue that static typing restricts what programs you
can write (also true). | prefer dynamic typing. | hate a language that
tells me what to do. But some smart people seem to like static typing,
so the question must still be an open one.

ISR RITHEREHREXS

ALY mot
RENIES Lisp Algol 60

ﬁiv_t (*E_C) 8 L}@{ 00

Pascal C
mEEEsR (00) 55 \. Smalltalk
ML Modula C++\/
igﬁﬁitin% . ‘k”/ l S/

Many others: Algol 58, Algol W, Scheme, EL1, Mesa (PARC), Modula-2,
Oberon, Modula-3, Fortran, Ada, Perl, Python, Ruby, C#, Javascript, F#...

EEHIS: B ERRARERE

HHVES: BT REFIRERIASSITE Pythor

>>> add_one = lambda x: x + 1

INPUT
INPUT x =

-
v (3
J(FUNCTION f:
xz vector or list
FU NCTION f: OUTPUT
‘ function f() E>
ﬁw 9
Lk INPUT Y[
OUTPUT f(x) FUNCTION o f(l pl=
x+1 map(,) |:>
f(f bl .

OUTPUT

g(f(x))=10
* @M

>>> map([1, 2, 3], add one)
[2, 3, 4]

>>> add _one(2)

ISR RITHEREHREXS

HHVES: BT REFIRERIASSITE

INPUT x
v
T
FUNCTION f:

)

OUTPUT f(x)

INPUT
x=3

4
(
FUNCTION f:
xz
) Coutpur

f(x)=9

INPUT Y[
FUNCTION g:
X+1
:

OUTPUT
g(f(x))=10

IHEER: A-EE (Lambda-8H) |,

7N

HChurch?E20tH2230F(2L

Alonzo Church (1903-1995)

Lisp: John McCarthy

gé \ K 7I=&_tll:l —

* Pioneerin Al

— Formalize common-sense M L, 1973

reasoning

. Also ML programming language
— Propose

— Mathem

Statically typed, general-purpose programming language
“Meta-Language” of the LCF theorem proving system

* Lisp

* Type safe, with formal semantics Haske" 1 990
stems fl’F * Compiled language, but intended for interactive use r
(sn\:$blgg|: * Combination of Lisp and Algol-like features Haskell

— Expression-oriented
— Higher-order functions
LISP 1 958 — Garbage collection

r — Abstract data types
— Module system
— Exceptions ,
Used in printed textbook as example language §

g language is

al-purpose, strongly typed, higher-order,
type inference, interactive and compiled use
azy evaluation, purely functional core, rapidly

ee in 80’s and 90’s to unify research

Robin Milner, ACM Turing-Award for ML, LCF Theorem Prover, ...

Simon
Peyton Jones

John Hughes - ‘ Phil Wadler

ISR RITHEREHREXS

wme (FEN) B5: FHMTFS, BLEIW=AT, HITE

LHEHSIV (HETN) 1IB5: Algol (1958), BASIC (1964), Pascal (1970), C (1972) ...

int mylist[] = {1, 2, 3};
int length = 3;
0

for (int 1 = 0; 1 < length; i++) { 1 2 3
mylist[1] = mylist[i] + 1; 4

RS EdE

J IEEHERTS

IHEIER: ERYL (BR19365EE)

State

. ™
g{::.;gsal Transition @ @
Machine Diagram n

Y Turing Machine _/@
Description @ @’f—/—" @

Infinite Tape .
o |1]|]o|lo|1|1]|]0o|0]o0

Alan Turing,
1912 - 1954

IB5SHIDR: ¥ Jr’%'d‘j% A NmAE XA

RO (LER) BE: RHOOFD, BHESNBRS, =HIHH

int mylist[] = {1, 2, 3};

int length = 3;
0;

for (int i = 0; 1 < length; i++) {

1 2 3
mylist[i] = mylist[i] + 1; /

RS EIT TR
} IEXHN 2RI
2§
ST 1 REEC AIXILEL :
‘v (1, 2, 3]
add one = lambda x: x+1 add_one l, l l

map([1l, 2, 3], add one)

IB5SHIDR: ¥ Jr’%'d‘j% A NmAE XA

RO (ER) BE: FHSOFE, BHEINBRS, =i
MO AN E HOTIEL

C: Haskell
long factorial (int n) .
{ factorial 0 =1
int c; factorial n = n * factorial (n - 1)
long result = 1;
for (¢ =1; ¢ <= n; c++) N
result = resulE:E:EZ:D éﬁ?ﬁ;E)(j
1 ifn=0
return result;
} fact(n) = {
n * fact(n-1) ifn>0

15 |:|E/J

HREXIRIF

Pokemon:
"""A Pokemon.

i

All Pokemon have:
e a name
e a trainer
e a level >
e an amount of HP (1life)
e an attack: tackle

Pokemon can:
e say their name
e attack other Pokemon
e receive damage

. TR

A NmAE XA

: AR TUHY—H,

&iE (BME) #IitE (1779) RIHZE

Pokemon:
basic_attack = 'tackle’
damage = 40

__init__(self, name, trainer):
self.name, self.trainer name, trainer
self.level, self.hp 1, 50
self.paralyzed False

speak(self):
print(self.name + '!")

attack(self, other):
self.paralyzed:
self.speak()

print(self.name, ‘'used', self.basic_attack, '!')
other.receive_damage(self.damage)

receive_damage(self, damage):
self.hp = max(0, self.hp - damage)
self.hp == O:
print(self.name,

‘fainted!") Berkeley CS61a courseware

IB5SHIDR: ¥ Jr%'d;% A NmAE XA

HEXRIES: w<NHN—i, 2uE (BE) FIirE (17h) B8

basic_attack
damage
__init__
speak

. - attack

receive_damage
basic_attack
J) 2 _
_ (@ . a\

basic_attack
prob
attack

Berkeley CS61a courseware

BEEHIDER: RTEERBEHRENXIS
ERNSIES: ORI, HE (Rl TS (75) M

ZHERNRIES:
Simula 67 (1967), Smalltalk (1972), C++ (1980), Java (1995)

=EI: BFEE

IBSHDR RIEFMTHAIU

long factorial (int n)

{

1nt C; 01101010011010100010110110010010101100101010101001010104
01111000101011110001101110111000101010010101001101010100

— . 01010100010010010110101000101001014400011001010100100110

1ong result l r 0011010101011110101101111010010010001014041010101000001 04

001101010011010100010110140010010101100104101010100101010
10111100010101111000110441011100010101001010100110101010
0010101000100100101101010001010010111000110010101001 0011
00011010101011110101101111010010010001011010101010000010
00110101001101010001011011001001010110010101010100101010
10111100010101111000110111014100010101001010100110101010
00101010001001001011010100010100101410001100101010010011
00011010101011410101101111010010010001011010101010000010
00110101001101010001011041001001010110010101010100101010
10111100010101111000110441014100010101001010100110101010
001010100010010010110101000101001014100014001041010010011

for (c

return result 2 00011010101011110101101411010010010001011010101010000010
00110101001101010001011011001001010110010101010100101010

} 10111100010101111000110111011100010101001010100110101010
00101010001001001011010100010100101110001100101010010011

00011010101011110101101111010010010001011010101010000010

00110101001101010001011011001001010110010101010100101010

10111100010101111000110111014100010101001010100110101010

factorial 0 =1
factorial n = n * factorial (n - 1)

N
N

299

*~NJ

e B IR TR

EEMIS: BRI

AN BRI TIERR?
RN 1 D
N i =i

FOREE (ZEAES

AT AR REA *iL{T%zJ%?
XJ P SEE ST BARIE SHIEF

HERIENE (!ZDEE'E’EI’J =)

TE_LUE BIEN Eﬂﬁ

IR

WimE B
(18, EREEX)
>

U

FR IR EY

long factorial (int n)

{
int c;
long result = 1;

for (c 1 < c++)

return result;

>

TAN AW

VALY

Ay 3

ﬁfr'ﬂgﬁ'@ ' El:j:l:'f __I-LJ

ASELARIZ A

s IREFRFITAIA

l|:||:|E/J 2

01101010011010100010110110010010101100101010101001010101
01111000101011110001101110111000101010010101001101010100
01010100010010010110101000101001014400011001010100100110
001101010101111010110111101001001000101404101010100000101
00110101001101010001011011001001010140010101010100101010
10111100010101111000110111011100010101001010100110101010
00101010001001001011010100010100101110001100101010010011
00011010101011110101101111010010010001011010101010000010
00110101001101010001011011001001010110010101010100101010
101111000101011110001101110111000101010010101004110101010
00101010001001001011010100010100101410001100101010010011
00011010101011410104101141010010010001011010101010000010
00110101001101010001011041001001010110010101010100101010
101111000101041111000110111014100010101001010100110101010
0010101000100100101101010001010010144000414001041010010011
00011010101011110101101111010010010001011010101010000010
00110101001101010001011011001001010110010101010100101010
10111100010101111000110111011100010101001010100110101010
00101010001001001011010100010100101110001100101010010011
00011010101011110101101111010010010001011010101010000010
00110101001101010001011011001001010110010101010100101010
10111100010101111000110111011100010101001010100110101010

4 =

=17

) s iR
a=1 i a=1 L
b =2 #' b =2 e Sy fRERES/ RN
c=a+b . c=a+b c=a+b
L ” | L ")
print(“*Hello, world!") | print(“Hello, world!")
A& r. %] =17

fi=: Bx5EALT, THFERE, HEEXN
R PUTERE (KESELMN)

dlin

IH]
P
/\
@
¥
Wt

EFHRITHET,

SO

I
I
I
I
I
I
1 ILOADj /li=j+k | 1 ILOADj Mli=j+k
2 ILOADK | 2 ILOADK
3 |ADD 3 |ADD
4 ISTORE| : 4 ISTORE|
5 ILOADi //if(i<3) | 5 ILOADi //if(i<3)
6 BIPUSH 3 6 BIPUSH 3
7 IF_ICMPEQ L1 I 7 IFLICMPEQ L1
4
ﬁ-t%““ ‘ 8 ILOADj /j=j-1 I 8 ILOADj /j=j-1
9 BIPUSH 1 I 9 BIPUSH 1
10 ISUB I 10 ISUB
11 ISTORE] I 11 ISTORE|
12 GOTOL2 I 12 GOTOL2
13 L1: BIPUSHO // k=0 | 13 L1: BIPUSHO //k=0 - X
14 ISTORE k 14 ISTORE k * / ,E; l*n'
I mg
15 L2: : 15 L2: =1 l‘
I
I

Ay 3 s

R NTFRELAREL A

BN R. RIEFHUTAIU

2RSS “BREE" - (FPERS!)

A

LA T LUSEIR JavaiRE
SEREFNBENNZHE,
ROBBAT, ERiTIE
PAIITHAR, BB
WEKNBIBS, BBNT.
RIEBESRB.

» JIT »| HIEHES

HH ASTER A SRIBES?

— (AR S RIFIES?
B PR — MBSO

R S AP R R

(RSN

Eil=z

/_\E;Z¥E/J1I:I =

299
Ty

CHERY

B B3 L

=K

CHITEES

)

REDPHINEIRER (RE.
BEfES) SThTEES

EERIOEA?

RUFAHhR :
FKix55i2iE, BeiEscINdAT™
EMTERES
235 2B, YR, FJE
R =TE BB

JHSE:
HRERTEEE STTRAEE
HIENHS: EaEIRERENENX
EHINAES: REL. R, actorE

IETfS/=Z 2%
FET Oyt oy
SRR W MruRaE

ISR 1ERE:
T RIERFEE
Bl FTHE. SR

Architect Programmer

Programming
Language

Corhpiler,

Runtime
environment

Diagnostic
Tools

TB=14 N VIR,

/== 121«+9€I?E1+A . RBERP: oI5 (WHEERS) //#S (EZ RN
AERE: RS (lEtteE

sISHRE: e, HERH (e

ZE

£ = KB

sSsRB: Wt e. 1488 B8 iaH, RBUEIG: ffitTe
BEIREER: GC/RC, iffiERs ?ﬁﬁggi #ﬁitigg\ %ﬁ%rﬁ

BEIRE: WSS ownershipfl<Eas[EHRAHNE]: HHEZRE

A
i

THERA

ST R T,

f2 B

Akl E
FliFEE

RS- SE
= & e,

PR

O s
AR -SEFEES
* EIE

BEEERE okt BRI A ICERRES
FEAEATIE = 5:00--11:00. 11:30--15:30

o R EEE L

GRE NES RPN £BB

O 0
EET RAXE

PEERAY

HEEE

FBATUIRAE

TIAMEE(T A (what)

add one = lambda x: x+1
map ([1l, 2, 3], add one)

JIET\VImiE !
IR BEIRZAREAYRER

int mylist[]

int length

for

(int 1

mylist]

1]

37
0; i < length;
1]

{1, 2, 3}

mylist]

i+4) {
+ 1;

HEEE

I_%_B)/I\X;E&: add one = lambda x: x+1
map([1l, 2, 3], add one)

28y class Stac{ String s = "Hello";
void push(Aa){... } Stack<String> st =
Apop(){... } new Stack<String>();
o} st.push(s);

s = st.pop();

R

|
\

N \B,E

==
=]

f

RERACFIRTE A

V.S.

RIS At = 2 PR

- WIRAJEIZE: private/protected/public
° *E%*&}E*ﬁé Interface

R -

functor F(P: EQ) : EQ =
STructct

Eyps: £t = Pt » P.E

fun eq((x,y), (u,v)) = P.eq(x,u) andalso P.eq(y,V)
end;

Public

, Private
operations

operation

Linked list

Record
Data structure

structure IntEq : EQ =

struct signature EQ =
type t = int sig
vVa _]_ = ':—1 = I: O ‘I-" . h t '\'I.-p e e l em
and; ;
e val eqg: elem * elem -> bool

: end;
structure IntTupleEg = F(IntEq); '

IntTupleEg.eq((3,4),(3,4));

RIS At = 2 PR

- NISRAIEIEE: private/protected/publig
- HSREFERE
 IRRERGE

S ENERN, ERBAT=EMEZR

IEFMEM I 2%

PR ZmAERY E
CEMMLGRTE

N

2, LBt

el

if-then-else, loops, function calls, exceptions ...

one:
for (i = 0;
test += 1;
goto two;

}

1 < number;

two:
if (test > 5) {
goto three;
}

++1) {

Go-to statement
considered
harmful (1968)

Edsger W. Dijkstra

IEFAtEFIZ 21

» BTMNZIZRAYZRIA
+ BB RIS FIHIR
- KRRS WEFEREE

int* x, vy, z;
int o = 4;

X + v; X
o + “1237;X

RAIRG
5

e

Python Java, Rust

55R8L: MLURiEZ2M, FANESHRIOXAE

IEFAtEFIZ 21

» BMRINLTRAIZRIA
© RE RIS
L KEZe WERSE

PR BIIGE vs. E)J%i%'éﬂuﬁ}ﬂ
o JRU: EFRRYEHA A& AR
fRIRAIRRAICH N
WK RIS
. EWJ Java, Rust, Typescript
. E)J%F% . B THEEG =
175"J Python

%l

)N} &

ESITEon
e 30
Python Java, Rust
ElSRE BSRE

BB MIURIZSY, FESHROR

STIGE: TN

%K*FU}E%& . EHK*FU

1IN = ll_:\jc:I:

iiE, EsiThEEREGE

“hello, world” + 123 X

int factorial (int n)

{

int c;
int result = 1;
for (¢ = 1; c <= n; c++) if (> 0):
result = result * c; z =y + “world”; 7 7 7
else
return result; z =y + 4; 7 77

factorial (“hello”); X £(x) > 0 iffg(x) > 0 227

Gradual Typing

*'?%ﬁﬁ

EEEF' %J:$ té k3 _ﬁE?F' IE
oS +
At _ _ + n

Static Dynamic

POPL 2015 - 2021

o s Il |ﬁere ntlal Prlva Y .
Tyne System nenendem Tvne
Gradual “’"“‘9 00ram SYNtNesIs eame

\-

F= EIJ*E

- SREIET

- fmies. REMV/ERRR. FOM0E. T, TR IEARIRS
- KiFHFIE: tERE. WfFEAE. Befb. SERNIRNSE

* IRIFHIIK

* FRIFSEIN G/ F TR SRR

i

. ZDFREREFIIRIZESR

Mot

- IDE

« ik T ELAELE
- B
- B/

TRIE1E = AR PRXAOT X

RFRF%&
FAAESR =hE

Ul/ 8082/ 2=l B/ IR/ XMLEE TE4%

/...
_IDE BE— TV EREEES
Rz =R e TMEANESRTIE!

:@ﬁ%ﬁﬂ
- s
R oo

MERETER

HH ASTER A SRIBES?

T 2HESEHINES?
& N — MBS R OIS E?

\o|

— EES AR E?

PPT from: Java Language Features — Late 2019 Edition

79 1 _|_ Z %ﬁ E g i B _E_Z: Ekﬁ |I:|:|I f)rlb 7 Brian Goetz, Java Language Architect

New Release Cadence

Java 9 - released Sept 2017
3 Y2 years in the making
Over 90 JEPs

Somewhat disruptive release. . Evolution and Programming Languages
Java 10 — March 2018 (new, and already o
A Programming Languages i o

Java 11 - Sept 2018

First “LTS” release under new cadence

17 JEPs
Java 12 — March 2018 ' w e - ;
Java 13 - Just released : " N /";*g §
Java 14— undenway... Programming Problems @f ”'(I g

Java: 6 H— 1\HRE

Computing Hardware

EE—EREES (1)

ZImie: REEUmETIE RN SREENRS

« OCaml (1996), Scala (2003)

 Python, Javascript

« C++11, Java 8 (2014): E=jpolambdat/ll

« Rust (2010), Kotlin (2011), Dart (2011), Swift (2014)&EMES

V==

Scala

Scala is ar{uh ject-oriented and functional]anguage]which 1S
completely Interoperable with Java and .NET.

It removes some of the more arcane constructs of these

: (o]0 £ ;
environments instead: —
//;,FJ RISy

(1) a uniform object model, FP ZIMESS

(2) pattern matching and higher-order f

(3) novel ways to abstract and compose programs, T

Can We Provide Better Language Support for
Component Systems?

Martin Odersky, EPFL

Invited Talk,
ACM Symposium on Programming Languages and Systems (POPL),
Charleston, South Carolina, January 11, 2006.

Why Unify FP and OOP?

Both have complementary strengths for composition:

Functional programming: Makes it easy to build interesting things

from simple parts, using

e higher-order functions,
e algebraic types and pattern matching,
e parametric polymorphism.
Object-oriented programming: Makes it easy to adapt and extend

complex systems, using

e subtyping and inheritance,
e dynamic configurations,
e classes as partial abstractions.

= = /J_EBEEE_%’ (2)

- FINEELSE
* Null Safety gg:] nullable “Null References: The Billion Dollar Mistake”
- ZRl=5|ERE T
- Tony Hoare
var a: String = "abc" var b: String? = "abc" // can be set null
=null // %wiFiai= b=null //ok
vaI | = a.length // ok, awhPAF < Znull val | = b.length // #iF$81%, bR 8EZnull

val | = if (b != null) b.length else -1 // ok

= = IJ_EBEEEE_%’ (2)

- FIFERE
 Null safety: non-nullable
- 58lz5|BRE

“Null References: The Billion Dollar Mistake”

- Tony Hoare
- N2 S N2 def £ ’ .
 ASREUES S NS AUG E P eS
- EEBEERERNNEREZHAIEIR return x
. Typescrlpt =T e
« Python type hints return x + y
def greeting(name: str) -> str: def g(): // %%?S?Sﬂilﬁiﬁ
return 'Hello ' + name return £(100, “123”)

>>> g() // BhSRBME

inig.g__EEZiﬁéiggg (2)

- FIFERE
 Null safety: non-nullable
- SRS |IARE

“Null References: The Billion Dollar Mistake”
- Tony Hoare

. RSAERIEE S| BRI B

- A[SRARRIZIES
« C++LeiFHiFEgE
« Rust
« Verona: HEXFFAF

https://github.com/microsoft/verona

IS —ExEREE - FAFLT (1)

AR ESUEENE S 1T F1SEIT
. 118835
- ERIRTE
- BT
- FRERHRIE

« 7. R, 7

DIVRIE

=]

IS —EXEREE - FAO (2)

* 1|:| = E’Jﬁfﬁhﬁ)ﬁﬂ*ﬁ%E’Jﬁ?ﬁ%ﬂﬁﬁi

BT SRR SR B T Lo e toriat (int
. BETE E —MER—E S IR |

int ¢ = n;
long result = 1; { result=n!/c!}

Testing shows the presence, not the while (c>1) {
absence of bugs. result = result * c;

c = c—-1;

}

{result=n!/c! A c=1}

Edsger W. Dijkstra

return result;

}

{result=n!}

Riza = AR ERE

The Next 700 Programming Languages

[CACM 9(3), 1966]

P. J. Landin
Univac Division of Sperry Rand Corp., New York, New York

‘.. .today ... 1,700 special programming languages used to ‘com-

municate’ in over 700 application areas.”’—Computer Software Issues,
an American Mathematical Association Prospectus, July 1965.

ISWIMIES (1%)
1) ﬁﬁ“ﬂxﬁéﬁ@mf‘

\/
/\

. lambdaZzix=
3) 1&15@?5&%]]&1%@@9&8’9@7_UEET T

Peter Landin

Riza = AR ERE

The Next 7000 Programming Languages

[LNCS, vol. 10,000, 2019]

Robert Chatley!, Alastair Donaldson®, and Alan Mycroft2(&)

! Department of Computing, Imperial College, London, UK
{robert.chatley,alastair.donaldson}@imperial.ac.uk
? Computer Laboratory, University of Cambridge, Cambridge, UK
alan.mycroft@cl.cam.ac.uk

Darwinian evolution in the context of programming languages ...

XPEFYM GEIES) NAIIANER (BSEESHEE) AIMLI
SRTAY € > /BRI —— ESEOKER/HA
FHAERIIIRIZERRITIRN € > B/ TEMIESESHITTHA

MizE = KEEE

The Next 7000 Programming Languages

[LNCS, vol. 10,000, 2019]

Robert Chatley!, Alastair Donaldson®, and Alan Mycroft2(&)

! Department of Computing, Imperial College, London, UK
{robert.chatley,alastair.donaldson}@imperial.ac.uk
? Computer Laboratory, University of Cambridge, Cambridge, UK
alan.mycroft@cl.cam.ac.uk

r=E2a R
RERGEE: IMBE= (Rust) . C/C++eiuiE (OB HEESIEAR) &

. Gradual typingRiEoh7SEE. SR, BFRIEERSYT
 FH TR LG —, RMAIREEINEAR 4 EEXNDHASEmEIISEF (EK{Erlang)
BESRITENRESLES 6. FEF R NAIRTIDET ERISUH

(BB KHISRE)

or W N =

On the foolishness of “natural language programming’

ie"BAESRE ' NERE
Edsger W.Dijkstra, EWD667, 1978

In order to make machines significantly easier to
use, it has been proposed (to try) to design
machines that we could instruct in our native
tongues. this would, admittedly, make the
machines much more complicated, but, it was
argued, by letting the machine carry a larger share
of the burden, life would become easier for us. It
sounds sensible provided you blame the
obligation to use a formal symbolism as the
source of your difficulties. But is the argument
valid? | doubit.

ATIUHRE " BTER", EARNKITRENTE
BRI ST B — X FER SIS R 53
BESR, BFEHAA, UlsRZoEET(E,
ANEHEERIRNTE. FIRZ MEGE, RIRRE(R
BEiE"WiE RS SEMIRIRIR. (B
XFMEEURSERIS? BORFRINEE,

0 F

XF "BAESHIZ" BIBE. DijkstrafitiTAIRZ

mikubest
FEIFFAIRERPSHERTRETELA, BIREATLINAE + X8
https://zhuanlan.zhihu.com/p/1895989957333607441

The virtue of formal texts Is that their manipulations,
In order to be legitimate, need to satisfy only a few
simple rules; they are, when you come to think of it,
an amazingly effective tool for ruling out all sorts of
nonsense that, when we use our native tongues, are
almost impossible to avoid.

PRSI ANBY Z AT . B ETERBEST
D REEMUETRIRAENE, MBS T, XL
EMEANBN T E— SRS R,

MXEERERA WERBAE ST L TR,

Papmly grapopa
HACKERS

AND
PAINTERS

My guess is that a hundred years from now people will
still tell computers what to do using programs we
would recognize as such. There may be tasks that we
solve now by writing programs and that in a hundred
years you won't have to write programs to solve, but |
think there will still be a good deal of programming of

the type we do today.

“Hackers & Painters”, Paul Graham, 2003

KRR RIZESE

KRB, BRAESSASBNRIEES, BENNFHNREES?
A=, BSHREERERN

iza sV ERME: A-M3ZRIOA- AR

fizie = FA— TR XIERAFARS, RHRETEINRN
BEEN, EREHR~/ENENEREERR TR

S RERESITRM, XUFEEZF (ER) B

EBES: BHRAEER _HEIRA o

KEERURIZEIESE
RRESZTRN, XUTHFZT (B95) B

MFREL SR, WERIESERNERTES,
(B ATE R FARIAMITARI TR

= ARIENHS

—
W3 ik - AREEEZ - Sl --- Bfa5E#H

RIBRAEE, FEESHALNE, BRISESHHSTESRESE
ESIRUIIN: BARSRE RSMESS > Hik \

T \ R BB R RS E/
RSB RIBERRNT), EER/WIEEE, BiE>> 55 it/ SiEsEe=

Programming is the art of telling
another human being what one
wants the computer to do.

N Dﬁ*ﬂ{l-f d Hﬂ.uﬂl-- e

AZ QUOTES

	编程语言简介
	编程语言发展历史
	编程语言发展历史
	编程语言排名
	编程语言排名
	编程语言排名
	幻灯片编号 7
	为什么会存在这么多编程语言？
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	经典函数式语言
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按计算模型和编程风格
	语言的分类：按程序执行方式
	语言的分类：按程序执行方式
	幻灯片编号 30
	语言的分类：按程序执行方式
	语言的分类：按程序执行方式
	语言的分类：按程序执行方式
	语言的分类：按程序执行方式
	幻灯片编号 35
	什么样的语言是好的语言？
	幻灯片编号 37
	幻灯片编号 38
	抽象能力
	抽象能力
	抽象能力
	模块化和可复用性 —— 信息隐藏
	模块化和可复用性 —— 信息隐藏
	模块化和可复用性 —— 信息隐藏
	正确性和安全性
	正确性和安全性 —— 类型系统
	正确性和安全性 —— 类型系统
	类型检查：动态类型 vs. 静态类型
	类型系统研究
	语言的实现
	什么样的语言是好的语言 —— 其他因素
	编程语言的构成 —— 狭义和广义
	幻灯片编号 53
	幻灯片编号 54
	语言的一些发展趋势（1）
	幻灯片编号 56
	幻灯片编号 57
	语言的一些发展趋势（2）
	语言的一些发展趋势（2）
	语言的一些发展趋势（2）
	语言的一些发展趋势 – 学术前沿（1）
	语言的一些发展趋势 – 学术前沿（2）
	幻灯片编号 63
	幻灯片编号 64
	幻灯片编号 65
	大模型时代，是否还需要编程语言？
	幻灯片编号 67
	幻灯片编号 68
	幻灯片编号 69
	幻灯片编号 70
	幻灯片编号 71

