
仓颉编程语言 入门教程
作者：仓颉编程语言布道师 刘俊杰

你好，仓颉

// hello.cj
main() {

println("你好，仓颉")
}

> cjc hello.cj -o hello
> ./hello
你好，仓颉

一、基本概念

标识符

由英文字母开头，后接零至多个英文字母、数字或下划线。

`if`
`while`

`cangjie2024`

cangjie

cangjie2024

cangjie_2024_06

由一至多个下划线开头，后接一个英文字母，最后可接零至多个
英文字母、数字或下划线。

&address

_c

_cangjie _c919 _o_o_

_2023

原始标识符是在普通标识符或关键字的外面加上一对反引号，主要用于
将关键字作为标识符的场景。

普通标识符

变量

变量将一个名字和一个特定类型的值关联起来。

var name: type = expr

let name: type = expr

const name: type = exprconst

当初始值具有明确类型时，可以省略变量类型标注，编译器会自动推断出变量类型。

可变变量

不可变变量

常量

var quantum: Int8 = 0
quantum = Random().nextInt8()

let result: Int8 = observe()

const Planck = 6.626 * 10.0 ** -34
编译时求值

运行时求值

变量类型

初始值

变量名

> cjc example.cj -o example
> ./example
π ≈ 3.148600
deviation: 0.007007

变量 估算圆周率

定义不可变变量，类
型由初值表达式确定

定义可变变量，
并标注变量类型

定义整型常量

修改可变变量的值

读取变量的值

01000000010010001111010111000011X =

Value 3.14 983644148

类型就像一份协议，规定了一块数据的组织结构及相应的解析/操作方式。

Float32 Int32Type

相同的数据，赋予不同的类型/协议，解析和操作结果并不相同。

X + X
01110101010000100110111111101000 00111011001000010011011111110100

6.28 1967288296

func f(x) {
...

}

如果程序中传递的变量不具有类型信息，就可能导致
数据误读/误操作等问题，产生预期之外的运行结果。

类型

仓颉编程语言是静态强类型语言，具有完备的类型系统，在编译时通过
类型检查避免数据误用问题，并提升代码的可维护性。

基础数据类型

整数类型

let a: Int64 = 2024

let b = 67u8

浮点数类型

let c: Float64 = 6.21

布尔类型

let d: Bool = true || false

字符类型

let e: Rune = '仓'

let f: Rune = '\u{9889}'

字符串类型

let g: String = "Cang" + "jie"

let h: String = """

若到江南赶上春，

千万和春住。

"""

let i: String = "Cangjie${a}"

数组类型

let j: Array<Rune> = ['仓', '颉']

let k: VArray<Rune, $2> = ['C', 'J']

元组类型

let l: (Int64, Float64) = (2024, 6.21)

区间类型

let m: Range<Int64> = 2019..2024

整数类型 Int8 Int16 Int32 Int64 UInt8 UInt16 UInt32 UInt64

字面量后缀 i8 i16 i32 i64 u8 u16 u32 u64

浮点数类型 Float16 Float32 Float64

字面量后缀 f16 f32 f64

以 Unicode 值定义字符

插值字符串

表达式是可以求值的程序元素，可用于变量赋值、函数传参和返回值等场景。

表达式

let result = if (x > 2024) { block } else { block }

let result = try { block } catch (e: Exception) { block }

let result = match (color) {
case Red(value) => block
case Green(value) => block
case _ => block

}

let result = data |> fn1 |> fn2 |> fn3

......

示例中的 block 表示代码块，它代表一个顺序执
行流，其中的表达式将按编码顺序依次执行。

let result = (x ** 2 + y ** 2) ** 0.5

block := (expr | declvar)*

在以上求值场景中，if/try/match 等表达式的值，
等于所执行代码块中最后一个表达式的值。如果代
码块是空的，则规定其类型为 Unit，Unit 类型
唯一取值的字面量是 ()。

变量声明表达式

if 表达式

如果 if 表达式具有 else 代码块，则 if 表达式的
值就等于所执行代码块最后一个表达式的值。其他情况
的 if 表达式类型为 Unit。

*

?

> cjc example.cj -o example
> ./example
15.004436 km/s
第二宇宙速度，嫦娥奔月

if (exprBool) {
block

} else if (exprBool) {
block

} else {
block

}

如果 exprBool 取值为 true，将执行 if 分支，反之
执行 else 分支。如果执行了某个分支或没有可选分
支，都会跳出 if 表达式并执行后续代码。

if 分支

else 分支可以是一个代码块
或一个新的 if 表达式。

while 表达式

> cjc example.cj -o example
> ./example
√2 ≈ 1.414214

规定 while 表达式的类型是 Unit。

while (exprBool) {
block

}

do {
block

} while (exprBool)

循环条件

循环体

exprBool

true

false

> cjc example.cj -o example
> ./example
农历二零二四年各月干支：
丙寅 丁卯 戊辰 己巳 庚午 辛未 壬申 癸酉 甲戌 乙亥 丙子 丁丑

for-in 表达式

for (name in expriterable) {
block

}

规定 for-in 表达式的类型是 Unit。

遍历对象的类型需要实现迭代器接口 Iterable<T>，运行
时，将逐次调用迭代器取值并执行循环体，在循环体中可
以通过循环变量引用对应值。

遍历对象循环变量

循环体

Array<T> 已实现了
Iterable<T> 接口

引用循环变量

for-in 表达式

var sum = 0
for (i in 1..=99:2) {

sum += i * i
}

let array = [(1, 2), (3, 4), (5, 6)]
for ((x, y) in array) {

println("${x}, ${y}")
}

var number = 2
for (_ in 0..5) {

number *= number
}

for (i in 0..10 where i % 2 == 1) {
println(i)

}

遍历对象是 Range 表达式。 如果迭代器取值是元组类型，可以在定
义循环变量时进行解构。

如果在循环体中无须引用循环变量，
可使用通配符占位。

可使用 where 引导一个 Bool 表达式，
取值为 true 才会执行循环体。

程序结构

在包的顶层作用域中，可以定义一系列的变量、函数和自定
义类型（枚举，结构体，类，接口），以及包的声明与导入
等，其中的变量和函数被称为全局变量和全局函数。

在非顶层作用域中可以定义变量和函数，称为局部变量和局
部函数。自定义类型中的局部变量和函数，称为成员变量和
成员函数。 如果要将包编译为可执行文件，需要在顶层作

用域中定义一个 main 函数作为程序入口。

包（package）是仓颉程序的最小编译单元，一个包由一到多个源文件组成，在每个源文件中
可以声明当前文件所属包，也可以导入其他包，由此实现程序的高效管理和复用。

main() {
...

}

main(args: Array<String>) {
...

}
程序启动参数

返回整型或 Unit 类型值

二、函数

func name(params): type {
blockfunc

}

定义函数

可以为命名参数设置默认值 name!: type = exprconst

*paramsnamed := name!: type, name!: type

params := paramsnormal?paramsnamed?

blockfunc := (expr | declvar | declfunc)*

*paramsnormal := name: type, name: type 在函数体中还可以定义函数，称为嵌套函数。
嵌套函数可以捕获其外层作用域中的局部变量，
由此构成闭包。

函数类型的表达方式 () -> type

(type, type) -> type
*

在函数体中返回值 return expr

函数名 参数列表

函数返回值类型

函数体

命名参数只能写在
非命名参数之后

namefunc(args)

调用函数

在实参列表中，可以省略有默认值的命名参数，这时对应
实参将取其默认值。

args := argsnormal?argsnamed?

argsnormal := expr, expr *

argsnamed := nameparam : expr, nameparam : expr *

> cjc example.cj -o example
> ./example
CDBAFEG

函数不仅可以被调用，还可以作为值去使用，如赋值给变量、
作为函数的参数和返回值等。

实参列表

函数作为参数

嵌套函数

捕获外层局部变量

函数作为返回值

函数赋值给变量

调用函数

使用参数默认值为命名参数传参

这里使用函数实现二叉树，核心是借助闭包特性

{ params => blockfunc }

lambda 表达式

lambda 表达式可以让函数的创建和使用更加灵活， lambda 表达式的值就是一个匿名函数。

lambda 表达式中无须标注返回值类型，
仓颉编译器会从上下文中自动推导。

> cjc example.cj -o example
> ./example
0.800000, 5.000000, -0.250000, 0.800000,
5.000000, -0.250000
0.800000, 0.640000, 0.921600, 0.289014,
0.821939, 0.585421, 0.970813, 0.113339,
0.401974, 0.961563, 0.147837

参数列表

函数体

lambda 表达式作为函数参数

周期 3

周期 ∞，产生伪随机数

> cjc example.cj -o example.exe
> ./example
D:/app/cangjie/tools/bin/cjcov.exe
D:/app/cangjie/tools/bin/cjdb.exe
D:/app/cangjie/tools/bin/cjfmt.exe
D:/app/cangjie/tools/bin/cjlint.exe
D:/app/cangjie/tools/bin/cjpm.exe
...

应用实例遍历目录

递归调用，遍历子目录

打印遍历到的
每个文件路径

对当前目录下的每个
文件，调用处理函数

设置遍历对象
的处理函数

如果需要对不同路径执行相同遍历操作，可以使用嵌套函
数和闭包特性重构左侧函数，这也被称为“函数柯里化”。

三、枚举

item := name | name(type, type)*

定义与实例化

enum name {
item (| item)*
(declfunc | declprop)*

} enum Expr {
Number(Float64) | Add(Expr, Expr) | Invalid

public operator func +(that: Expr): Expr {
return Add(this, that)

}
}有参枚举项

无参枚举项

枚举项

枚举类型名

成员函数 成员属性

nameitem
nameitem(args)

创建枚举实例

在枚举项名字前也可以添加枚举类型名前缀（由“.”分隔）

支持递归定义

创建枚举实例

成员访问规则

在成员函数和成员属性的声明前可以添加一些修饰符

public 设置成员在枚举定类型定义块内外均可见

private 设置成员仅在枚举类型定义块中可见

static 设置成员为静态成员，只能通过枚举类型名访问

在成员函数中都能引用枚举项。在实例成员函数中可以引用其他
成员，在静态成员函数中只能引用静态成员。

在实例成员函数中可以使用 this 变量，它代表当前枚举实例，
this 是不可变变量。

默认为实例成员，只能通过枚举实例访问

> cjc example.cj -o example
> ./example
3421657
1213121412131215121312141213121

引用静态成员

实例成员函数使用 this 变量

静态成员函数

访问实例成员

访问静态成员

引用枚举项

match 表达式

case 2024 => println("Cangjie")常量模式

类型模式 case object: Plane => object.fly()

case other => process(other)绑定模式

case (name, 80) => println(name)元组模式

case Rot(speed) => rotate(speed)枚举模式

case _ => default()通配模式

可以用 “|” 连接多个同类型的模式

pattern 后还可以用 where 增加约束
case pattern where exprBool

> cjc example.cj -o example
> ./example
0
1 1 2 3 5 8 13 21 34 55

+ *
match(expr) {

case pattern => block

}

case pattern | pattern 常量模式，匹配 0 或 1

绑定模式，匹配 n > 1

解构枚举项的构造参数
通配模式，匹配 n < 0

pattern 可以取如下几类模式：

> cjc example.cj -o example
> ./example
7.500000

应用实例表达式计算
用以组织一棵算术运算树

递归计算当前实例对
应算术表达式的值

解构出每个算符的操作数

重载加/减/乘/除操作符，
简化算术表达式的构造

Option

var result = Some(2024)

var result: Option<Int64> = 2024

var result: ?Int64 = 2024
创建 Option 实例

在部分应用场景中，一个变量无法在整个生命周期内都被赋予有
效值，例如存在异常情况或可选的初始化设计等，为了高效且安
全地表达这种“或有或无”的值，仓颉语言提供了 Option 类型。

表达无值状态

判断当前实例是否持有有效值

表达有值状态

尝试获取有效
值，如果失败
就抛出异常

尝试获取有效值，如果
失败就执行指定操作

异常情况

返回有效值，这里会通过自动
类型推导包装为 Option 类型

> cjc example.cj -o example
> ./example
-123456
parse failed

在仓颉语言中，不存在空值或空指针的概念，可能存在无效值的
场景只能用 Option 去判断处理，避免了空值相关安全问题。

从字符串解析十进制整数

异常情况

四、结构体

定义与实例化

struct name {
constructor*
(declvar | declfunc | declprop)*

}

在结构体中可以定义多个构造函数，它们用于创建结构体实例。

init(params) {
blockfunc

}
普通构造函数

namestruct(declvars) {
blockfunc

}
主构造函数

namestruct(args)创建结构体实例
> cjc example.cj -o example
> ./example
Create a point: (3.000000, 4.000000)
Visit the point: (3.000000, 4.000000)

构造函数

主构造函数

创建 Point 实例 declvars是对成员变量的声明，在此统一了
成员变量的定义和初始化，减少冗余编码。

成员变量 成员函数 成员属性

结构体名

访问实例成员

成员访问规则

在成员变量、成员函数和成员属性的声明前可以添加一些修饰符

public 设置成员在结构体内外均可见

private 设置成员仅在结构体内可见

static 设置成员为静态成员，只能通过结构体名访问

在实例成员函数中可以引用其他成员，在静态成员函数中只能引
用静态成员。

在实例成员函数中可以使用 this 变量，它默认为当前实例的拷贝。

默认为实例成员，只能由实例变量访问

> cjc example.cj -o example
> ./example
Point
Create a point: (3.000000, 4.000000)
Visit the point: (3.000000, 4.000000)
Visit the point: (1.000000, 2.000000)

如果需要在实例成员函数中修改可变实例成员变量，需要在成员
函数前添加 mut 修饰符，其中的 this 就成为当前实例的引用。

引用其他成员

访问静态成员

访问实例成员

修改实例成员变量

this 变量是当
前实例的拷贝

mut 成员函数

mut 成员函数中的 this
是当前实例的引用

> cjc example.cj -o example
> ./example
Binary Tree
CDBAFEG

应用实例二叉树

定义实例成员变量，
存储节点信息

定义实例成员函数，
实现中序遍历

静态成员变量

静态构造函数

静态成员函数

普通构造函数

五、类

定义与实例化

class name {
constructor*
(declvar | declfunc | declprop)*

}

在类中可以定义多个构造函数，它们用于创建类实例（对象）

init(params) {
blockfunc

}
普通构造函数

nameclass(declvars) {
blockfunc

}
主构造函数

nameclass(args)创建类实例
> cjc example.cj -o example
> ./example
Create a point: (3.000000, 4.000000)
Visit the point: (3.000000, 4.000000)

构造函数

主构造函数

创建 Point 实例 declvars是对成员变量的声明，在此统一了
成员变量的定义和初始化，减少冗余编码。

成员变量 成员函数 成员属性

类名

访问实例成员

成员访问规则

在成员变量、成员函数和成员属性的声明前可以添加一些修饰符

public 设置成员在类的内外均可见

private 设置成员仅在类中可见

static 设置成员为静态成员，只能通过类名访问

在实例成员函数中可以引用其他成员，在静态成员函数中只能引用
静态成员。

在实例成员函数中可以使用 this 变量，它是当前实例的引用，因
此可以直接在实例成员函数中修改可变的实例成员变量。

默认为实例成员，只能由类实例访问

protected 设置成员在此类及其子类中可见

引用其他成员

访问静态成员

访问实例成员

修改实例成员变量

this 变量是当
前实例的引用

> cjc example.cj -o example
> ./example
Point
Create a point: (3.000000, 4.000000)
Visit the point: (1.000000, 2.000000)
Visit the point: (1.000000, 2.000000)

继承

open 修饰的类可以被其他类继承，如果类 B 继承了类 A，则
类 B 会拥有类 A 的所有成员（但只能访问非 private 成员），
实现代码复用。

open class A { ... }
class B <: A { ... }

在子类中可以改写继承来的实例成员函数/属性（需要被 open
修饰），称为覆盖，即便将子类实例转为父类型使用，在调用
成员函数时也会优先选择覆盖版本，以此实现一种多态机制。

类 B 继承类 A，称 B 为 A 的子类，A 为 B 的父类
实现中序遍历

不引入新成员，
仅构造父类实例

覆盖 NodeA 中的同名
函数，改为前序遍历

> cjc example.cj -o example
> ./example
CDBAEFG

super 表示父类构造函数
基于类的多态机制，这
棵子树会按前序遍历

在“大同”中实现“小异”，求同存异

属性
属性是一种特殊的成员，在使用时类似于成员变量，但它
通过 get 和 set 函数来间接取值和赋值，由此可以实现
访问控制、数据监控、跟踪调试、数据绑定等功能。

> cjc example.cj -o example
> ./example
0
A has been updated to 128
B has been updated to 64
C has been updated to 32
D has been updated to 16
E has been updated to 64
F has been updated to 32
G has been updated to 32

prop name: type {
get() {

blockfunc

}
set(name) {

blockfunc

}
}

属性名

属性类型

get 属性被读取/求值时将调用的函数，此函数
需要返回 type 类型的值。

set
属性被赋值时将调用的函数，它的唯一参数
就是被赋的值（类型为 type）。只有 mut
修饰的属性才能定义 set 函数。

与属性关联的成员变量

mut 属性中才能定义 set

set 函数也支持递归调
用，这里按前序遍历同
步更新子树各节点

读取属性
修改属性

本例可拓展应用于控制树更新场景，例如 UI 组件树的刷新等。

CPU

Stack

Global

1100..10

1100..10

1100..10

Heap

1001..01

var x

值类型与引用类型

class, Array, ...

struct, VArray, Int64 ...

在编译期，只能规划全局存储区、
栈区和 CPU 寄存器的分配，任何
变量也只能和这些区域关联。

如果对一个变量的访问只涉及编译期分配区域的数据读/写，
对应的变量和类型就属于值类型。可变/不可变性也是针对
这部分数据而言的。

如果把编译期分配区域的数
据作为索引，映射和取用托
管内存中的数据，对应的变
量和类型就属于引用类型。

托管堆内存，由仓颉
runtime 自动管理

Stack 上分配一个索
引块 S1 和 H 关联

修改 H

改变 S1 中的索引值，和
Heap 中另一块内存关联

Stack 上分配另一个
索引块 S2 和 H 关联

分配 Stack 上另一块内存
S2，并拷贝 S1 的数据

Stack 上分配一块内存 S1

内存 S2 被新的数据覆盖

Heap 上分配一块内存 H

六、接口与扩展

接口

接口用来定义一个抽象类型，它不具有成员变量，仅约定一组
功能对应的成员函数或属性原型。其他类型可以实现接口中的
成员函数或属性，并成为该接口的子类型。

interface name {
(declfunc | declprop)*

}

enum name <: interface { ... }

struct name <: interface { ... }

class name <: interface { ... }

extend type <: interface { ... }

为已定义的类型
扩展和实现接口

接口名

成员函数可以有默认实现

表示实现此接口的类型实例表示接口名

定义类型时
实现接口

声明成员函数原型
成员函数

成员属性

定义接口

实现接口
实现接口中声明的成员

实现接口

> cjc example.cj -o example
> ./example
0.000000
......
0.297017
0.297852
0.298689
0.299527
0.300366
0.301207

注：t*sin(t) 的原函数为 -t*cos(t) + sin(t) + C，可以借此验证以上数值计算的准确性。

信号系统仿真

为内建类型实现接口，
定义常值信号源

为 class 实现接口，
定义正弦波信号源

定义乘法器

定义积分器

覆盖接口中有默认
实现的成员函数

计算过程也体现了基
于接口的多态机制

扩展

> cjc example.cj -o example
> ./example
2024Cangjie

除了接口扩展，仓颉还支持为一个类型直接扩展成员函
数或属性，并且不引入新的子类型关系。当我们不想破
坏原有类型的封装性，但需要添加额外的功能时，就可
以使用这种扩展能力。

extend type {
(declfunc | declprop)*

}

默认情况下，扩展仅在它被定义的包中有效，如果需
要导入/导出扩展，相关规则请参看仓颉语言文档。

为字符串扩展实现
“循环右移”操作

为 type 增加成员函数

为 type 增加成员属性

泛型
泛型即参数化类型，通过给自定义类型增加类型参数，可定义类型构造器。 class List<T> where T <: P { ... }

var data: List<Int64>在使用处通过给定不同的类型实参，即可构造出各种具体类型。

> cjc example.cj -o example
> ./example
CDBAFEG
3421657

仓颉中可以泛型化的类型有函数，结构体，类，枚举，接口。

Node<Rune> 类型

类型参数

泛型约束

对一系列类型均适用的
代码，实现代码复用

给定类型实参，构造出
具体的 class 类型

这一约束保证 T
类型实例可打印

Node<Int64> 类型

使用类型参数

七、异常处理

异常类型

Exception

描述业务逻辑问题或 I/O 问题等导致的
异常，例如协议解析失败或试图打开不
存在的文件等，这类异常可以由开发者
构造、抛出和处理。

描述仓颉 runtime 内部故障或资源耗尽
导致的异常，只能由 runtime 抛出，通
常无法恢复，程序中捕获后应尽量安全
地终止程序。

Error

开发者可以继承 Exception 或其子类来自定义异常类，但不能继承 Error 或其子类。

构造异常实例并设置异常描述信息

获取异常描述信息

异常类型名 + 异常描述
打印异常堆栈

获取异常堆栈

仓颉提供了 Exception 和 Error 两个类型，用于描述程序运行时的异常行为。

构造和抛出异常
构造异常即是构造异常类实例，在 throw 关键字后接一个异常类实例，即可抛出此异常。

抛出异常
构造异常

定义异常

抛出异常

构造异常

异常处理

?

*

try {

block

} catch (pattern) {

block

} finally {

block

}

如果产生异常且被捕获处理，try 表达式的值
由所执行的 catch 代码块决定，反之由 try
代码块决定。

在 try 表达式中，至少要有一个 catch 分支
或一个 finally 分支。

可能抛出异常的业务代码

异常类型模式
异常处理代码，异
常类型匹配后执行

收尾代码，无论是否产生异常、
异常是否被匹配处理，都会执
行，一般用于资源回收

异常处理流程

异常处理

> cjc example.cj -o example
> ./example
-123456
not an integer
0
Parse Failed
clean up
An exception has occurred:
Exception: Parse Failed

at default.ParseException::init()(test.cj:20)
at default.String::toInteger()(test.cj:27)
at default.main()(test.cj:62)

注：此程序引用了“构造和抛出异常”小节的示例代码

类型为 Int64

异常未被处理，程序终止

不会被执行

总会被执行

八、并发编程

线程模型

1

1

2
3

…

M

N

…

轻量用户线程

系统线程
CPU

仓颉 M:N 轻量线程模型

当用户线程 t 做 I/O 等资源访问操作时，若资源尚未就绪，线程 t 就会被 runtime
挂起等待、并调入其他线程运行，当资源就绪后又会适时恢复 t 的执行，高效利用
CPU 资源，实现高并发能力。

仓颉语言实现了 M:N 轻量线程模型，支持在少量系统线程之上创建海量用户线程，
在实现层面用户线程对应协程，仓颉 runtime 会自动管理和调度这些协程。

创建线程

spawn {

blockfunc
}

用 spawn 关键字修饰一个无参 lambda，就可以创建
一个线程，并在线程中执行此函数。

spawn 表达式的类型为 Future<T>，T 是线程函数的
返回值类型。

等待线程执行结束，
获取线程返回值

等待线程 ns 纳秒，
如果超时返回 None，
反之得到线程返回值

相当于get(0)

向线程发送终止信号 获取线程对应的 Thread 类实例

图像数据分成 N 块

创建线程，各块图像并行处理

图像灰度化

各线程在此与主线程同步

将处理后的数据重
组为图片并保存

应用实例

> cjc example.cj -o example
> ./example
π ≈ 3.141509
deviation: 0.000084

估算圆周率

向正方形内随机投点 M 次，
统计落入内接圆中的次数 在多个线程中做投点实验

等待各线程计算结束，
并获取计算结果

综合各线程统计数
据，估算圆周率

九、跨语言互操作

宿主语言提供一个接口库，开发者调用其中的接口
与目标语言进行交互。

用宿主语言的语法描述目标语言中的元素，在调用
目标程序时，就像在调用宿主程序一样便捷。

按照使用方式或编程范式的差异，跨语言互操作可以分为两类：

跨语言互操作

auto runtime = XXLangEngine()
runtime.push(3.14)
runtime.call("process")
auto result = runtime.get(0).asBool()

接口式

声明式

extern {
bool process(float x)

}
...
auto result = process(3.14)

仓颉语言支持和 C、ArkTS 等语言之间的声明式互操作。

仓颉 C 互操作基本步骤

1、用仓颉函数相关语法和特定修饰符声明 C 函数原型

2、在互操作场景中，像调用普通仓颉函数一样调用已声明的 C 函数

3、在编译时指定依赖的 C 库

foreign func process(x: Float32, y: Float32): Float64

let result = unsafe { process(3.14, 2.71) }

> cjc example.cj –L. –ltest -o example

// test.c
double process(float x, float y) { ... }

> clang test.c -shared -fPIC -o libtest.so

需要在 unsafe 块中调用 C 函数

在声明 C 函数时，核心在于仓颉如何描述 C 数据类型，因此我们需要知道 C 与仓颉的类型映射关系。

C 仓颉 Size (byte)
void Unit 0
char UInt8 1

int8_t Int8 1
uint8_t UInt8 1
int16_t Int16 2
uint16_t UInt16 2
int32_t Int32 4
uint32_t UInt32 4
int64_t Int64 8
uint64_t UInt64 8
ssize_t IntNative platform dependent
size_t UIntNative platform dependent
float Float32 4
double Float64 8

基础类型类型映射

其他类型类型映射

C 仓颉

struct @C struct

char[] CString

type* CPointer<type>

结构体成员由对应的类
型映射关系进行声明

在标准库中为 CString 和 CPointer 扩展了一些成员函数，便于操作 C 字符串和指针。

应用实例

> clang ffi.c -shared -fPIC -o libffi.so
> ls
ffi.c libffi.so ...

> cjc example.cj –L. -lffi -o example
> ./example
-3.146569, 1.760428

创建 @C struct 实例，
它可以传递给 C 程序

调用 C 函数，并获
取返回的结构体实例

访问 C 结构体成员

十、宏

概述
// example.cj
macro package xxx

> cjc example.cj --compile-macro
> ls
lib-macro_xxx.so

在程序编译阶段，会产生很多有用的信息，可
用于程序的分析、优化和功能扩展等。为此仓
颉提供了“宏”特性，允许开发者介入编译过程，
获取部分编译期信息并修改程序，可以实现埋
点插桩、静态反射和语法扩展等功能。

宏程序也是用仓颉语言编写的，相比普通仓颉程序，
主要是编译和使用方式不同，宏程序只在编译其他
程序时被加载使用，业务程序在运行时不会涉及宏。

宏的作用机制

> cjc macro.cj --compile-macro
> cjc example.cj -o example
func FUNC
add IDENTIFIER
(LPAREN
x IDENTIFIER
: COLON
Int64 INT64
, COMMA
y IDENTIFIER
: COLON
Int64 INT64
) RPAREN
{ LCURL

NL
return RETURN
x IDENTIFIER
+ ADD
y IDENTIFIER

NL
} RCURL

add IDENTIFIER
(LPAREN
1 INTEGER_LITERAL
, COMMA
2 INTEGER_LITERAL
) RPAREN

定义与调用

macro name(name: Tokens): Tokens {
(expr | declvar)*

}

宏名
调用处代码对应的单词集
合，由编译器解析传入

宏返回的单词集合，
将替换调用处的代码

宏需要定义在宏包内

可以获取各单
词的词法信息

本例没有对输入代码
作修改，原样返回

导入宏包

在函数定义处调用宏

在表达式上调用宏

注意这些信息是在编译时输出的
Tokens 及 Token 类型的详细用法，请参看仓颉标准库文档。此外，本节只
介绍了非属性宏，仓颉还支持属性宏，宏的详细内容请参看仓颉语言文档。

在编译时修改程序

其他代码保持不变

将原程序中的
加号变成减号

> cjc macro.cj --compile-macro
> cjc example.cj -o example
> ./example
-1

编译时调用宏，x + y
将被替换为 x - y > cjc --debug-macro example.cj

可以使用如下命令输出被宏修改后的源代码：

这会生成名为 example.cj.macrocall 的
文件，其中的内容是：

基于宏为仓颉实现简易 LINQ

example.cj

macro.cj

> cjc macro.cj --compile-macro
> cjc example.cj -o example
> ./example
97
92
81

应用实例 语言扩展

在实际应用中，应该对扩展语法做严格解析和异常处理，
这里限于篇幅和演示目的，只做了简单解析和处理。

C# 的语言集成查询（LINQ）特性

