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部分内容来源于Stanford CS242 (2012) 课件



主要内容

• 代码块和变量作用域

• 内联代码块和活动记录

• 函数调用
• 静态作用域和动态作用域

• 高阶函数和闭包
• 函数作为参数
• 函数作为返回值



代码块

独立出现-内联 伴随特定语法-内联 作为函数体

{
var x: Int = 3
{
var y: Int = x + 4

}
}

while(x < n){
var counter: Int = 0
…
if (counter > 100){
var tmp: Int = 0
…

}
}

func f(x: Int, y: Int): Int {
var counter: Int = 0
…

}
…
f(3, 5)
f(4, 8)

内联（in-line）：代码出现的位置就是它被执行的位置 非内联

注意：仓颉本身不支持代码块，此代码仅为示意



代码块

{
var x: Int = 3
{
var y: Int = x + 4

}
}

begin_A:
…
…

begin_B
…

end_A
…

end_B


可以并列和嵌套，但不能部分重叠



局部变量和内存管理

• 嵌套代码块和局部变量

• 内存管理
• 进入代码块：分配空间，存储本代码块中声明的变量
• 推出代码块：释放空间（局部变量消亡）

{
var x: Int = 3
{
var y: Int = 4
x = 1 + y

}
}

在不同的块中声明的变量

内部块中，访问“局部变量”y
和非局部变量x



外部块中x声明的作用域为红色代码块
中 挖掉 黑色 部分后剩余的部分

作用域（scope）和生存期（lifetime）

• （声明的）作用域
• 可以访问该声明的代码区域

• （变量的）生存期/生命周期
• 为变量分配的存储空间的存在的时间段

{
var x: Int = 3
…
{
var y: Int = x + 4
…
{
var x: Int = 100
y = print(x)

}
}

}外部代码块中x的生存期为整个外部代
码块的执行时间（从进入代码块到退出
的时间），包括内部x的生存期。

内部的x声明隐藏/遮盖了外部的x声明
作用域 不等于 生存期



内联代码块的活动记录

• 活动记录
• 保存在运行时栈上的数据结构
• 存储局部变量的值

{
var x: Int = 0
var y: Int = x + 1
{
var z: Int = (x + y) * (x - y)

}
}

活动记录压栈，为x、y分配内存空间

计算并保存x、y的值

内层代码块动记录压栈，为z分配内存空间

计算并保存z的值

内层代码块的活动记录退栈

外层代码块的活动记录退栈



内联代码块的活动记录

控制链（control link）

局部变量

中间结果

控制链（control link）

局部变量

中间结果

环境指针

• 控制链
• 指向栈上前一个活动记录的指针

• 活动记录压栈
• 把环境指针赋值给新的控制链
• 设置环境指针，指向新的活动记录

• 活动记录退栈
• 把当前活动记录的控制链赋值给环境

指针



例子
{
var x: Int = 0
var y: Int = x + 1
{
var z: Int = (x + y) * (x - y)

}
}

活动记录压栈，为x、y分配内存空间

计算并保存x、y的值

内层代码块动记录压栈，为z分配内存空间

计算并保存z的值

内层代码块的活动记录退栈

外层代码块的活动记录退栈

控制链（control link）

x

y

控制链（control link）

环境指针

0

1

z

x+y

-1

1

x-y -1



函数调用和活动记录

• 函数定义 func f(a1: t1, …, an: tn): tr {
… // 局部变量声明
… // 函数体
return …

}

• 活动记录需要包括以下内容
• 返回地址
• 参数
• 局部变量，中间结果
• 函数返回时，在上一级活动中保存返回值的地址



函数调用和活动记录

• 返回地址
• 函数返回后，跳转回调用者

的代码地址

• 返回值保存地址
• 上级调用者活动记录中保存

函数返回值的地址

• 参数
• 保存调用者传递的参数

控制链（control link）

返回地址

返回值保存地址

环境指针

参数

局部变量

中间结果



例子：factorial —— 函数调用

func fact(n: Int): Int
{

if (n <= 1) { 
1 

} else {
n * fact（n-1）

}
}

控制链（control link）

返回地址

返回值保存地址

环境指针

n

fact(n-1)

k

fact(k)

控制链（control link）

返回值保存地址

n

fact(n-1)

3

fact(3)

控制链（control link）

返回值保存地址

n

fact(n-1)

2

fact(2)

控制链（control link）

返回值保存地址

n

fact(n-1)

1

fact(1)



例子：factorial —— 函数返回

控制链（control link）

返回值保存地址

n

fact(n-1)

3

fact(3)

控制链（control link）

返回值保存地址

n

fact(n-1)

2

fact(2)

1

控制链（control link）

返回值保存地址

n

fact(n-1)

3

fact(3)

控制链（control link）

返回值保存地址

n

fact(n-1)

2

fact(2)

控制链（control link）

返回值保存地址

n

fact(n-1)

1

fact(1)

func fact(n: Int): Int
{

if (n <= 1) { 
1 

} else {
n * fact（n-1）

}
}



例子：factorial —— 函数返回

控制链（control link）

返回值保存地址

n

fact(n-1)

3

fact(3)

控制链（control link）

返回值保存地址

n

fact(n-1)

2

fact(2)

控制链（control link）

返回值保存地址

n

fact(n-1)

1

fact(1)

控制链（control link）

返回值保存地址

n

fact(n-1)

3

fact(3)

2

func fact(n: Int): Int
{

if (n <= 1) { 
1 

} else {
n * fact（n-1）

}
}



编译型语言的栈排布
func f(a1: Int, a2: Int): Int
{

let x1: Int = …
let x2: Int = …
…
return …

}

参数1

旧  %EIP

旧 %EBP

局部变量

参数 …

…

保存的寄存器值

参数1

旧  %EIP

旧 %EBP

局部变量

参数 …

…

保存的寄存器值

…

…

活动记录
（栈帧，stack frame）

高地址

低地址

%ESP

%EBP
%EBP-4

%EBP+8

编译器根据函数定义，提前计算
好活动记录的大小，以及每个单
元相对于位移

访问相应单元只需要采用相对于
%ESP / %EBP的相对地址

活动记录存储在连续的栈空间



编译型语言的栈排布

参数1

旧  %EIP

旧 %EBP

局部变量

参数 …

…

保存的寄存器值

参数1

旧  %EIP

旧 %EBP

局部变量

参数 …

…

保存的寄存器值

…

…

活动记录
（栈帧，stack frame）

高地址

低地址%ESP

%EBPfunc f(a1: Int, a2: Int): Int
{

let x1: Int = …
let x2: Int = …
…
return …

}

编译器根据函数定义，提前计算
好活动记录的大小，以及每个单
元相对于位移

访问相应单元只需要采用相对于
%ESP / %EBP的相对地址

活动记录存储在连续的栈空间



一阶函数调用 —— 参数传递

• 基本术语：左值和右值
• 赋值语句： y = x + 3
• 左边的标识符代表其地址，称为左值
• 右边的标识符代表其地址中保存的值，称为右值

• 参数传递：传引用（pass-by-reference）
• 把参数的左值（地址）保存在活动记录中
• 被调用函数（callee）可以通过该地址为调用者（caller）中的变量赋值

• 参数传递：传值（pass-by-value）
• 把右值拷贝一份保存在活动记录中
• Callee不能修改caller中的变量值
• 避免指针别名

仓颉中仅支持传值，与大多数
语言保持一致





非局部变量的访问
func h(): Unit
{

let x = 1
func g(z: Int){ x + z }
func f(y){

var x = y + 1
g(y * x)

}
f(3) 

}

• 函数g中的 “x + z” 将访问哪个 x ？
• 静态作用域：访问g定义处所属的活动记录中的值

• g(12)返回 13
• 动态作用域：访问g的调用者的活动记录中的值

• g(12)返回16

x 1

y 3

x 4

z 12g(12)

f(3)

h()



静态作用域和access link
func h(): Unit
{

let x = 1
func g(z: Int){ x + z }
func f(y){

var x = y + 1
g(y * x)

}
f(3) 

}

控制链（control link）

access link

x 1

g •

f •

func g(z: Int){ x + z }

func f(y){
var x = y + 1
g(y * x)

}

控制链（control link）

access link

y 3

x 4

h()

f()

控制链（control link）

access link

z 12

g()

• 使用access link 访问非局部变量
• Access link总是指向声明该函数的

活动记录



尾调用和尾递归优化

• 函数g对函数f的调用是尾调用（tail call），如果：
• 调用函数f是g中的最后一个动作（并把f的返回值直接作为自己的返回值）

• 编译优化
• 如果g对f的调用是尾调用，可以在调用f的时候就把g的活动记录退栈
• 对尾递归（tail recursion）尤其有用，因为caller和callee的活动记录格式一样

• 被调用者可以直接复用调用者的活动记录，无需退栈/压栈

func g(x: Int)
{

if (x > 0){
f(x)

} else {
-5 * f(x)

} 
}

尾调用

不是尾调用，虽然出现在函数体
代码的最后



计算大于y的最小的2的指数

func f(x: Int, y: Int)
{

if (x > y){
x

} else {
f(2*x, y)

} 
}

f(1, 3) + 7

• 编译优化
• 将返回值地址设置为

caller的返回值地址

• 同样，将control link、
返回地址都复用caller
的值

• 返回时，跨过caller，返
回caller的caller（的
caller …）



计算大于y的最小的2的指数

func f(x: Int, y: Int)
{

if (x > y){
x

} else {
f(2*x, y)

} 
}

f(1, 3) + 7

• 编译优化
• 先将caller的活动记录退栈，再把callee压栈 

= 原地复用caller的活动记录

• 效果
• 尾递归优化后效果等同于循环



尾递归和循环

func f(x: Int, y: Int)
{

if (x > y){
x

} else {
f(2*x, y)

} 
}

f(1, y)

func g(y: Int)
{

var x = 1
while (!x > y){

x = 2 * x
}
return x

}

g(y)

终止条件判断

循环体

初始值



高阶函数

• 语言特性
• 函数本身作为其他函数的参数或者返回值
• 有时候称作“函数作为一等公民（first-class citizen）”
• 实现中需要保存函数的“环境”

• 简单情况
• 函数作为参数
• 需要同时传递access link，指向栈上函数定义处的活动记录

• 更复杂的情况
• 函数作为返回值
• 需要赋值并额外保存函数定义处的活动记录



函数作为参数

func f0() {
let x = 4
func f(y: Int){ x * y }
func g(h){

var x = 7
h(3) + x

}
g(f) 

}
f0()

两个x的取值各是多少？



函数参数和闭包
控制链（control link）

access link

x 4

f •

g •

Code for f …

Code for g …
控制链（control link）

access link

h •

x 7

f0()

g(f)

控制链（control link）

access link

y 3

h(3)

func f0() {
let x = 4
func f(y: Int){ x * y }
func g(h){

var x = 7
h(3) + x

}
g(f) 

}
f0()

闭包



闭包



小结：函数作为参数



函数作为返回值

• 语言特性
• 函数返回“新的”函数
• 需要维护函数的“环境”

• 函数被动态创建
• 被创建的函数包含非局部变量（“捕获”非局部变量）
• 函数值为闭包<env, code>
• 闭包动态创建，但代码不会动态生成和编译

func comp(f: A -> B, g: B -> C){
return { x => g(f(x)) }

}

func comp(f: A -> B, g: B -> C){
func builder(x){

return g(f(x))
}
return builder

}

Lambda表达式



函数（作为返回值）带有私有数据
Javascript code为例





小结：函数作为返回值



小结
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