
变量作用域和函数
冯新宇

部分内容来源于Stanford CS242 (2012) 课件

主要内容

• 代码块和变量作用域

• 内联代码块和活动记录

• 函数调用
• 静态作用域和动态作用域

• 高阶函数和闭包
• 函数作为参数
• 函数作为返回值

代码块

独立出现-内联 伴随特定语法-内联 作为函数体

{
var x: Int = 3
{
var y: Int = x + 4

}
}

while(x < n){
var counter: Int = 0
…
if (counter > 100){
var tmp: Int = 0
…

}
}

func f(x: Int, y: Int): Int {
var counter: Int = 0
…

}
…
f(3, 5)
f(4, 8)

内联（in-line）：代码出现的位置就是它被执行的位置 非内联

注意：仓颉本身不支持代码块，此代码仅为示意

代码块

{
var x: Int = 3
{
var y: Int = x + 4

}
}

begin_A:
…
…

begin_B
…

end_A
…

end_B


可以并列和嵌套，但不能部分重叠

局部变量和内存管理

• 嵌套代码块和局部变量

• 内存管理
• 进入代码块：分配空间，存储本代码块中声明的变量
• 推出代码块：释放空间（局部变量消亡）

{
var x: Int = 3
{
var y: Int = 4
x = 1 + y

}
}

在不同的块中声明的变量

内部块中，访问“局部变量”y
和非局部变量x

外部块中x声明的作用域为红色代码块
中 挖掉 黑色 部分后剩余的部分

作用域（scope）和生存期（lifetime）

• （声明的）作用域
• 可以访问该声明的代码区域

• （变量的）生存期/生命周期
• 为变量分配的存储空间的存在的时间段

{
var x: Int = 3
…
{
var y: Int = x + 4
…
{
var x: Int = 100
y = print(x)

}
}

}外部代码块中x的生存期为整个外部代
码块的执行时间（从进入代码块到退出
的时间），包括内部x的生存期。

内部的x声明隐藏/遮盖了外部的x声明
作用域 不等于 生存期

内联代码块的活动记录

• 活动记录
• 保存在运行时栈上的数据结构
• 存储局部变量的值

{
var x: Int = 0
var y: Int = x + 1
{
var z: Int = (x + y) * (x - y)

}
}

活动记录压栈，为x、y分配内存空间

计算并保存x、y的值

内层代码块动记录压栈，为z分配内存空间

计算并保存z的值

内层代码块的活动记录退栈

外层代码块的活动记录退栈

内联代码块的活动记录

控制链（control link）

局部变量

中间结果

控制链（control link）

局部变量

中间结果

环境指针

• 控制链
• 指向栈上前一个活动记录的指针

• 活动记录压栈
• 把环境指针赋值给新的控制链
• 设置环境指针，指向新的活动记录

• 活动记录退栈
• 把当前活动记录的控制链赋值给环境

指针

例子
{
var x: Int = 0
var y: Int = x + 1
{
var z: Int = (x + y) * (x - y)

}
}

活动记录压栈，为x、y分配内存空间

计算并保存x、y的值

内层代码块动记录压栈，为z分配内存空间

计算并保存z的值

内层代码块的活动记录退栈

外层代码块的活动记录退栈

控制链（control link）

x

y

控制链（control link）

环境指针

0

1

z

x+y

-1

1

x-y -1

函数调用和活动记录

• 函数定义 func f(a1: t1, …, an: tn): tr {
… // 局部变量声明
… // 函数体
return …

}

• 活动记录需要包括以下内容
• 返回地址
• 参数
• 局部变量，中间结果
• 函数返回时，在上一级活动中保存返回值的地址

函数调用和活动记录

• 返回地址
• 函数返回后，跳转回调用者

的代码地址

• 返回值保存地址
• 上级调用者活动记录中保存

函数返回值的地址

• 参数
• 保存调用者传递的参数

控制链（control link）

返回地址

返回值保存地址

环境指针

参数

局部变量

中间结果

例子：factorial —— 函数调用

func fact(n: Int): Int
{

if (n <= 1) {
1

} else {
n * fact（n-1）

}
}

控制链（control link）

返回地址

返回值保存地址

环境指针

n

fact(n-1)

k

fact(k)

控制链（control link）

返回值保存地址

n

fact(n-1)

3

fact(3)

控制链（control link）

返回值保存地址

n

fact(n-1)

2

fact(2)

控制链（control link）

返回值保存地址

n

fact(n-1)

1

fact(1)

例子：factorial —— 函数返回

控制链（control link）

返回值保存地址

n

fact(n-1)

3

fact(3)

控制链（control link）

返回值保存地址

n

fact(n-1)

2

fact(2)

1

控制链（control link）

返回值保存地址

n

fact(n-1)

3

fact(3)

控制链（control link）

返回值保存地址

n

fact(n-1)

2

fact(2)

控制链（control link）

返回值保存地址

n

fact(n-1)

1

fact(1)

func fact(n: Int): Int
{

if (n <= 1) {
1

} else {
n * fact（n-1）

}
}

例子：factorial —— 函数返回

控制链（control link）

返回值保存地址

n

fact(n-1)

3

fact(3)

控制链（control link）

返回值保存地址

n

fact(n-1)

2

fact(2)

控制链（control link）

返回值保存地址

n

fact(n-1)

1

fact(1)

控制链（control link）

返回值保存地址

n

fact(n-1)

3

fact(3)

2

func fact(n: Int): Int
{

if (n <= 1) {
1

} else {
n * fact（n-1）

}
}

编译型语言的栈排布
func f(a1: Int, a2: Int): Int
{

let x1: Int = …
let x2: Int = …
…
return …

}

参数1

旧 %EIP

旧 %EBP

局部变量

参数 …

…

保存的寄存器值

参数1

旧 %EIP

旧 %EBP

局部变量

参数 …

…

保存的寄存器值

…

…

活动记录
（栈帧，stack frame）

高地址

低地址

%ESP

%EBP
%EBP-4

%EBP+8

编译器根据函数定义，提前计算
好活动记录的大小，以及每个单
元相对于位移

访问相应单元只需要采用相对于
%ESP / %EBP的相对地址

活动记录存储在连续的栈空间

编译型语言的栈排布

参数1

旧 %EIP

旧 %EBP

局部变量

参数 …

…

保存的寄存器值

参数1

旧 %EIP

旧 %EBP

局部变量

参数 …

…

保存的寄存器值

…

…

活动记录
（栈帧，stack frame）

高地址

低地址%ESP

%EBPfunc f(a1: Int, a2: Int): Int
{

let x1: Int = …
let x2: Int = …
…
return …

}

编译器根据函数定义，提前计算
好活动记录的大小，以及每个单
元相对于位移

访问相应单元只需要采用相对于
%ESP / %EBP的相对地址

活动记录存储在连续的栈空间

一阶函数调用 —— 参数传递

• 基本术语：左值和右值
• 赋值语句： y = x + 3
• 左边的标识符代表其地址，称为左值
• 右边的标识符代表其地址中保存的值，称为右值

• 参数传递：传引用（pass-by-reference）
• 把参数的左值（地址）保存在活动记录中
• 被调用函数（callee）可以通过该地址为调用者（caller）中的变量赋值

• 参数传递：传值（pass-by-value）
• 把右值拷贝一份保存在活动记录中
• Callee不能修改caller中的变量值
• 避免指针别名

仓颉中仅支持传值，与大多数
语言保持一致

非局部变量的访问
func h(): Unit
{

let x = 1
func g(z: Int){ x + z }
func f(y){

var x = y + 1
g(y * x)

}
f(3)

}

• 函数g中的 “x + z” 将访问哪个 x ？
• 静态作用域：访问g定义处所属的活动记录中的值

• g(12)返回 13
• 动态作用域：访问g的调用者的活动记录中的值

• g(12)返回16

x 1

y 3

x 4

z 12g(12)

f(3)

h()

静态作用域和access link
func h(): Unit
{

let x = 1
func g(z: Int){ x + z }
func f(y){

var x = y + 1
g(y * x)

}
f(3)

}

控制链（control link）

access link

x 1

g •

f •

func g(z: Int){ x + z }

func f(y){
var x = y + 1
g(y * x)

}

控制链（control link）

access link

y 3

x 4

h()

f()

控制链（control link）

access link

z 12

g()

• 使用access link 访问非局部变量
• Access link总是指向声明该函数的

活动记录

尾调用和尾递归优化

• 函数g对函数f的调用是尾调用（tail call），如果：
• 调用函数f是g中的最后一个动作（并把f的返回值直接作为自己的返回值）

• 编译优化
• 如果g对f的调用是尾调用，可以在调用f的时候就把g的活动记录退栈
• 对尾递归（tail recursion）尤其有用，因为caller和callee的活动记录格式一样

• 被调用者可以直接复用调用者的活动记录，无需退栈/压栈

func g(x: Int)
{

if (x > 0){
f(x)

} else {
-5 * f(x)

}
}

尾调用

不是尾调用，虽然出现在函数体
代码的最后

计算大于y的最小的2的指数

func f(x: Int, y: Int)
{

if (x > y){
x

} else {
f(2*x, y)

}
}

f(1, 3) + 7

• 编译优化
• 将返回值地址设置为

caller的返回值地址

• 同样，将control link、
返回地址都复用caller
的值

• 返回时，跨过caller，返
回caller的caller（的
caller …）

计算大于y的最小的2的指数

func f(x: Int, y: Int)
{

if (x > y){
x

} else {
f(2*x, y)

}
}

f(1, 3) + 7

• 编译优化
• 先将caller的活动记录退栈，再把callee压栈

= 原地复用caller的活动记录

• 效果
• 尾递归优化后效果等同于循环

尾递归和循环

func f(x: Int, y: Int)
{

if (x > y){
x

} else {
f(2*x, y)

}
}

f(1, y)

func g(y: Int)
{

var x = 1
while (!x > y){

x = 2 * x
}
return x

}

g(y)

终止条件判断

循环体

初始值

高阶函数

• 语言特性
• 函数本身作为其他函数的参数或者返回值
• 有时候称作“函数作为一等公民（first-class citizen）”
• 实现中需要保存函数的“环境”

• 简单情况
• 函数作为参数
• 需要同时传递access link，指向栈上函数定义处的活动记录

• 更复杂的情况
• 函数作为返回值
• 需要赋值并额外保存函数定义处的活动记录

函数作为参数

func f0() {
let x = 4
func f(y: Int){ x * y }
func g(h){

var x = 7
h(3) + x

}
g(f)

}
f0()

两个x的取值各是多少？

函数参数和闭包
控制链（control link）

access link

x 4

f •

g •

Code for f …

Code for g …
控制链（control link）

access link

h •

x 7

f0()

g(f)

控制链（control link）

access link

y 3

h(3)

func f0() {
let x = 4
func f(y: Int){ x * y }
func g(h){

var x = 7
h(3) + x

}
g(f)

}
f0()

闭包

闭包

小结：函数作为参数

函数作为返回值

• 语言特性
• 函数返回“新的”函数
• 需要维护函数的“环境”

• 函数被动态创建
• 被创建的函数包含非局部变量（“捕获”非局部变量）
• 函数值为闭包<env, code>
• 闭包动态创建，但代码不会动态生成和编译

func comp(f: A -> B, g: B -> C){
return { x => g(f(x)) }

}

func comp(f: A -> B, g: B -> C){
func builder(x){

return g(f(x))
}
return builder

}

Lambda表达式

函数（作为返回值）带有私有数据
Javascript code为例

小结：函数作为返回值

小结

	变量作用域和函数
	主要内容
	代码块
	代码块
	局部变量和内存管理
	作用域（scope）和生存期（lifetime）
	内联代码块的活动记录
	内联代码块的活动记录
	例子
	函数调用和活动记录
	函数调用和活动记录
	例子：factorial —— 函数调用
	例子：factorial —— 函数返回
	例子：factorial —— 函数返回
	编译型语言的栈排布
	编译型语言的栈排布
	一阶函数调用 —— 参数传递
	幻灯片编号 18
	非局部变量的访问
	静态作用域和access link
	尾调用和尾递归优化
	幻灯片编号 22
	幻灯片编号 23
	尾递归和循环
	高阶函数
	函数作为参数
	函数参数和闭包
	闭包
	小结：函数作为参数
	函数作为返回值
	函数（作为返回值）带有私有数据
	幻灯片编号 32
	小结：函数作为返回值
	小结

