Type Checking vs Type Inference

e Standard type checking:

int f(int x) { return x+1; };

int g(int y) { return f(y+1)*2; };
— Examine body of each function

— Use declared types to check agreement

* Type inference:
It f(bmt x) { return x+1; };

»at g(ext y) { return f(y+1)*2; };

— Examine code without type information. Infer the
most general types that could have been declared.

ML and Haskell are designed to make type inference feasible.

Why study type inference?

* Types and type checking
— Improved steadily since Algol 60

* Eliminated sources of unsoundness.

* Become substantially more expressive.

— Important for modularity, reliability and compilation
* Type inference
— Reduces syntactic overhead of expressive types.

— Guaranteed to produce most general type.
— Widely regarded as important language innovation.

History

Original type inference algorithm

— Invented by Haskell Curry and Robert Feys for the simply typed
lambda calculus in 1958

In 1969, Hindley

— extended the algorithm to a richer language and proved it
always produced the most general type

In 1978, Milner

— independently developed equivalent algorithm, called algorithm
W, during his work designing ML.

In 1982, Damas proved the algorithm was complete.

— Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#,
Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6,
C++0x,...

uHaskell

* Subset of Haskell to explain type inference.
— Haskell and ML both have overloading
— Will not cover type inference with overloading

<decl> ::= [<name> <pat> = <exp>]
<pat> = Id | (<pat>, <pat>)
| <pat> : <pat> | []
<exp> = Int | Bool | [] | Id | (<exp>)

| <exp> <op> <exp>
| <exp> <exp> | (<exp>, <exp>)
| 1if <exp> then <exp> else <exp>

Type Inference: Basic Idea

* Example
f x =2 + x
> £ :: Int -> Int

* What is the type of f?
+ has type: Int > Int > Int
2 has type: Int
Since we are applying + to x we need x :: Int
Therefore f x =2 + x has type Int — Int

Step 1: Parse Program

* Parse program text to construct parse tree.

Infix operators are converted
to Curied function application
during parsing:

2+X =2 (+)2X

Step 2: Assign type variables to nodes

Variables are given same type
as binding occurrence.

Step 3: Add Constraints

e e a1
(_F s 0 - x :: t_1
— — — .

t1l->t6
t1l->t6

t_3 -> t_4 By :: ¢ 4 o

Int -> Int -> Int

Step 4: Solve Constraints

t0=t1l->t6

td=t1->t6

t2=¢t3->t 4 —_

t 2 = Int -> Int -> Int - t_3 -> t_4 = Int -> (Int -> Int)
t 3 = Int /
t0=t1->t6 €3 = Int
t4=t1->t6 t 4 = Int -> Int

t 4 = Int -> Int \

— \

t 2 = Int -> Int -> Int t 1 ->t 6 = Int -> Int
t 3 = Int l

t 0 = Int -> Int t 1 = Int

t 1 = Int t 6 = Int

t 6 = Int

t 4 = Int -> Int

t 2 = Int -> Int -> Int

t 3 = Int

Step 5:

Determine type of declaration

Int

= Int
= Int
= Int
= Int

Int

-> Int

-> Int
-> Int
-> Int

-> Int

X

2 + x
:: Int -> Int

Type Inference Algorithm

* Parse program to build parse tree
* Assign type variables to nodes in tree

* Generate constraints:

— From environment: constants (2), built-in
operators (+), known functions (tail).

— From form of parse tree: e.g., application and
abstraction nodes.

* Solve constraints using unification
* Determine types of top-level declarations

J. A. Robinson, A Machine-oriented logic based on the resolution principle,. J.
Assoc. Comput. Mach. 12, 23—41 (1965).

Constraints from Application Nodes

CRIER

* Function application (apply f to x)
— Type of f (t_0in figure) must be domain — range.

mmm) [t 0=t 1->t2

— Domain of f must be type of argument x (t_1 in fig)
— Range of f must be result of application (t_2 in fig)
— Constraint: t 0=t 1->t 2

Constraints from Abstractions

* Function declaration:

t0=t1->¢t2

— Type of f (t 0 in figure) must be domain — range

— Domain is type of abstracted variable x (t_1 in fig)

— Range is type of function body e
— Constraint:t 0=t 1->t 2

(t_2in fig)

Inferring Polymorphic Types

* Example:

* Step 1:
Build Parse Tree

fg=g 2
> f :: (Int -> t 4) -> t 4

Inferring Polymorphic Types

* Example:

* Step 2:
Assign type variables

fg=g 2
> f :: (Int -> t 4) -> t 4

Inferring Polymorphic Types

* Example:

* Step 3:
Generate constraints

fg=g 2
> f :: (Int -> t 4) -> t 4

t0=¢t1->t4
tl=¢t3->t4
t 3 = Int

Inferring Polymorphic Types

e Example: 9797
> £ ::
* Step 4:
Solve constraints

t0=¢t1->t4
tl=¢t3->t4
t 3 = Int

l [
4 .
'h,____f 3 3 _ '

t 0= (Int -> t 4) -> t 4
t1l= Int->¢t4
Int

r'.
("
I

Inferring Polymorphic Types

* Example: i . 2
* Step 5:
Determine type of top-level declaration
Unconstrained type

variables become
polymorphic types.

t 0= (Int -> t 4) -> t 4
t1l= Int->¢t4
Int

rr
w
I

Using Polymorphic Functions

. £ = 2
e Function: >§ &

(Int -> t 4) -> t 4

* Possible applications:

add x = 2 + x isEven x = mod (x, 2) == 0
> add :: Int -> Int > isEven:: Int -> Bool
f add f isEven

> 4 :: Int > True :: Bool

Recognizing Type Errors

e Function: fg=g2
>f :: (Int -> t 4) -> t 4

* |ncorrect use

not x = 1f x then True else False

> not :: Bool -> Bool

f not

> Error: operator and operand don’t agree
operator domain: Int -> a
operand: Bool -> Bool

* Type error:
cannot unify Bool — Bool and Int >t

Another Example

f (g,x) =g (g x)

. .
Example: "7 (68 ->t8, £t8) ->¢t8

* Step 1:
Build Parse Tree

Another Example

f (g,x) =g (g x)

. .
Example: "7 (68 ->t8, £t8) ->¢t8

* Step 2:
Assign type variables

Another Example

f (g,x) =g (g x)

. .
Example: "7 (68 ->t8, £t8) ->¢t8

* Step 3: S———
Generate constraints t3=(t1, t2)

r'-
o
|

Another Example

£ —
o Example: (g,x) =g (g x)

> f :: (£t 8->t 8, t8) ->t 8
. .
Step 4: . t0=t3->t8
Solve constraints £3= (t1, t2)
=t7->t8
=t 2 ->t7

Another Example

f (g,x) = g (g x)

. .
Example: >f :: (£ 8->t 8, t8) ->t8
* Step 5:
t0=t3 ->t 8
Determine type of f £3=(t1, t2)
=t 7 ->t_8
=t 2 ->t7

Polymorphic Datatypes

* Functions may have multiple clauses

length [] = 0
length (x:rest) =1 + (length rest)
* Type inference
— Infer separate type for each clause

— Combine by adding constraint that all clauses
must have the same type

— Recursive calls: function has same type as its
definition

Type Inference with Datatypes

° Example: length (x:rest) = 1 + (length rest)

e Step 1: Build Parse Tree

Type Inference with Datatypes

° Example: length (x:rest) = 1 + (length rest)

e Step 2: Assign type variables

-
Ao

(:::-l_t;nq]th :i t_U_:_> C:{_::_

P g

Type Inference with Datatypes

* Example:

length (x:rest)

1 + (length rest)

. t0=t3->t 10
* Step 3: Generate constraints|, 5 _ .,
t 3 = [t 1]
t6=1t9 ->t 10
_— t4=t5->t6
L — t 4 = Int -> Int -> Int
Q_%_lenc,;th i1 t 0 :_> Q {:) #2 t 3 ~ £ 5 = Int
S L 5 =
/ L_ t0=¢t2->¢t9

'\(x:

1 t lh..\] f.#--res'.t HH Eﬂ e
_;f’hxu__;L;?hu_ =

CF length

o Example: length (x:rest)

Type Inference with Datatypes

1 + (length rest)

e Step 3: Solve Constraints

.-"-----
A o
:i t__[]__:} Q__{__:

P

t—

[t 1] -> Int

t 3 ->t 10
t 2

= [t_1]

=t 9 ->t 10

=t 5->t 6

= Int -> Int -> Int

= Int
t_2 -> p_9

Multiple Clauses

* Function with multiple clauses

append ([],r) =«
append (x:xs, r) = x : append (xs, r)

* Infer type of each clause

— First clause:
> append :: ([t 1], t 2) -> t 2

— Second clause:
> append :: ([t 3], t 4) -> [t 3]

 Combine by equating types of two clauses
> append :: ([t 1], [t 1]) -> [t 1]

Most General Type

* Type inference produces the most general type

map (£, []) = []
map (f, x:xs) = £ x : map (f, xs)
>map :: (t 1 ->t 2, [t 1]) -> [t 2]

* Functions may have many less general types

>map :: (t 1 ->Int, [t 1]) -> [Int]
> map :: (Bool -> t 2, [Bool]) -> [t 2]
> map :: (Char -> Int, [Char]) -> [Int]

* Less general types are all instances of most general
type, also called the principal type

Type Inference Algorithm

* When Hindley/Milner type inference

algorithm was developed, its complexity was
unknown

* |n 1989, Kanellakis, Mairson, and Mitchell
proved that the problem was exponential-

time complete
e Usually linear in practice though...

— Running time is exponential in the depth of
polymorphic declarations

Information from Type Inference

e Consider this function...

reverse [] = []

reverse (x:xXs) = reverse Xs

... and its most general type:

> reverse :: [t 1] -> [t 2]

 What does this type mean?

Reversing a list should not change its type, so
there must be an error in the definition of reverse!

Type Inference: Key Points

Type inference computes the types of expressions

— Does not require type declarations for variables

— Finds the most general type by solving constraints

— Leads to polymorphism
Sometimes better error detection than type checking

— Type may indicate a programming error even if no type error.
Some costs

— More difficult to identify program line that causes error.

— Natural implementation requires uniform representation sizes.

— Complications regarding assignment took years to work out.
Idea can be applied to other program properties

— Discover properties of program using same kind of analysis

Haskell Type Inference

* Haskell uses type classes

— supports user-defined overloading, so the
inference algorithm is more complicated.

ML restricts the language
— to ensure that no annotations are required

* Haskell provides additional features

— like polymorphic recursion for which types cannot
be inferred and so the user must provide
annotations

