EFEXNREE (1)

A SEFXNSRIRE

- W SUEFHRIERIIIE
*+ RERIRTS
- SLIZE (instance variables) . FE (fields) . AUERRZEE (member variables) |
Bt (attributes) ...

o FEMBATTN, BEEESHELIZpublicdy
o pERa] WRE
« 1% (methods) . BkREAZL (member functions)

» HRXSSRIRIE
« BIMNREBBE—MEME, WREBBEREFEERE
- WRWEBES G, STLGSRERAESS, ZXE RIS, FHEERRREILSRIES,
TSI REP AR RXHREEMIR
- “server-oriented” E&E “message-oriented”

OOP to me means only messaging, local retention
and protection and hiding of state-process, and
extreme late-binding of all things. It can be done In
Smalltalk and in LISP. There are possibly other
systems in which this is possible, but I'm not aware of
them.

Alan Kay

SmalltalkFE K&
2003FERIEE

EEXIRAIPL MO

- HIAJRIE (dynamic dispatch)
. iU

A (FHR)
s PK (BERAFIN)

OOt FAZ5Hs)

e 35 WSRAYRR/ZEY /3=
- SLHITTE/GiR, 3£ (static) BE/AE
« SCIFEER: o.m(el, ..., en)
- EXFRoKIXEEM(el, ..., en)
« SLRFERTIRENESPRIREGER m(o, e, ..., en)
* x.add(y) VS. add (x, vVy)

o« 4RIK
- FERERARENGE, BRABESE
« WEJLASEEFEINALSERYTS A (override)
¢ FHA
» FRARIIHRRA LR REZERINISR

- IR SEE

scfal: T RTEIFZREE

- AL
« BN
« HMEER

e center,

« TOVFY &

2K (Shape)

¥EfZ (Rectangle) #

move, rotate. print

pli]

ol

(Circle)

« BRASK (FEAZAIE]) PinsINFhevtEs (AR E

BE BEFTE N LIRS

- HINFRAVREAZIA

- Z1 B

=]

CAE B

I:I

NSRRIl — B8

EEEERIE A

BiE) |

Shape)

—
——

func move(x: Int, y: Int): Unit { \

print("Shape moved to ($ $y)") (~\\ ——
' Y S Circle < Rectangle
} _ f/ 5 g)

// Other common methods for shapes -
} #ixFloverride

class Circle <: Shape {

func move(x: Int, y: Int): Unit { 1f§fﬁiﬁ7_fE5hape|3A7iUEPEl’Jl— TI:%

print("Circle moved to ($x, $y)")

/
SO 0] &). 4
class Shape {)_L /

}

}
// Other common methods for circles ‘

class Rectangle <: Shape { . }\ABAﬁl.JEFIEijH:Z){kS

func move(x: Int, y: Int): Unit { /=12
print("Rectangle moved to ($x, $y)") #L'fj'fl:xﬂzs-move('l O, 20)

}

// Other common methods for rectangles

} SIRE

let sl1: Shape = Circle()

let s2: Shape = Rectangle() BAZ FSEfRERBIRAR BT LA CircleiRectangle

sl.move(10, 20) // Should print "Circle moved to (10, 20)"

s2.move(30, 40) // Should print "Rectangle moved to (30, 40)" RIESCFRAZIR, BaiERENAImMove A

ERNRIESKERSE

e Simula 67: &—1001E=

- RYIBETRE

=t} Ejjl_ﬁﬁﬁ*ilnm

HTFAlgol 607 &
1977FFrrEaSimula (A8

« T FRERZTMESHNRIT

« Smalltalk
« C++

e Java
e C#

11+

767)

Simula

EENFIESRERE Simula

* B18&: Simula-1
- 1962F KBBSHIEITES Ly (Norwegian Computing Center)
« BBBA
 Ole-Johan Dahl, Bjgrn Myhrhaug, and Kristen Nygaard
» BANRLT
» Z%||Tony HoarexFdata typeRI1E; ARV
« £Algol 60EA E5| ANZF0RISE (prefix, SEIFEEY)
« Nygaard
» EEFER. BLaidnx
- REIESREBRIAM ST RS, FESEALEREGERFHIZN
« Myhrhaug #01 Nygaard
- WENER, RUERRWE

Simula/RRIEAXTRIKLT

- 51 REIEFEDNCRISTTHEAE (I72)

-N%
BIXARRZ B ERERINCR
50‘%175@
"RIEEFRT" (dot notation) 1HEIRISRAYAL R T E=/RRET
e Q.var
- RFEHE

« SKFLIRIE

/IHII'

REXEE

func

ZR{& U class Point(x,y); real x,y; formal p is pointer to Point
begin . A N
boolean procedure equals(p); ref(Point) p;
if p=/=none then
equals :=\abs(x - p.x) + abs(y - p.y) < 0.00001
real procedure dstance(p); ref(Point) p;
if p == none thenerror else
distance >sqrt(kx - p.x)**2 + (y - p.y) ** 2);
end ***point***

p :- new Point(1.0, 2.5); uninitialized ptr has
q :- new Peint(2.0,3.5); value none
if p.distance(q) > 2

pointer assignment

XITRIETL

code for
equals

p | e » access link Sl
real X 1.0
real vy 2.5]
proc equals | ¢
proc distance . y

R M S FKE

XIRFENCTR
Access linkBBFihpin B8

code for
distance

SLA51)2

class Li.ne(a,b,c); real a,b,Cc; « | ocal variables
begin
boolean procedure parallelto(l); ref(Line) I; N line determined by
if | =/= none then parallelto := ... ax+by+c=0
ref(Point) procedure meets(l); ref(Line) I;
begin real t; > PrOcedUI’es
if | =/= none and ~parallelto(l) then ...
end;
reald; d:=sqrt(a**2 + b**2); .
if d =0.0 then error else q
begin
d :=1/d; . Initialization:
5= and; Dbl 0= O “normalize” a,b,c
end;
end *** Line***

Simuladr B2k

* SEHIFERHBIE

* AR

class A
A class B
A class C

B class D

B SIFAFZIIKRE

d :- new D(...)

AT LAIN_E A SRR A FIBISR

(B)
)

R

A

©

A part

B part

D part

SimulaE255%EE %S

- K WH. K (prefixing) . FEBY. EJ5E (virtual
methods) ...

« 2 (Coroutine)

- 1/tRINEE (GC)

- TR

« 313, self/super, ERTE (FFST=E) . BF

HRNFRIESKERLSE Smalltalk

s BEVRIREHERIXISEE
« f£Xerox PARC FF &

. éfE : I“]XJ‘%‘KL.:. =, —JIEXIs
35 (class) tBE%I5
-%ﬁﬁﬁmﬂﬁ“ﬂwgﬁﬁﬁé"
- IEE R EFEK

« FE{LTFLispid "“—HIElist” REAE, {(BEIMBELXR

- N MWREBEINERE—FKBCAEERNER (FAsdFRIEE/AE) | #
Bl7RE A AT (el L

FEH &AM F——Dynabook

- LS FZERAlan Kayi2H
« SmalltalkIn BB S ImaE
o /NBUEIETTEA,
« 197054, B—MEaplEtE
- 3BT, FmBAYmini-computerFEMEEIINERIE, —&flssHTRAHE
« —FRTLATE ¥ L ¥ITIRER(ERATTE
. I¥SmalltalkiE= 892201
- IESRM{ENREESTHEERARRE
- N "IEERR" ’it
« EEEEEXRAREEIZIT

s 2 TWJ Point

EFE RIS

=D KBEMAE

Three class methods * Explanation

newX:xvalue Yyvalue | | - selector is mix-fix newX:Y:
A self new x: xvalue e.g, Point newX:3 Y:2

yeyalue - symbol » marks return value
Origin | | - new is method in all classes,
:i\;f ;'S\';X_ 0 inherited from Object
v 0 ' - | | marks scope for local decl
infflalize | | - initialize method sets pi, called
0i <- 3.14159 automatically

- <- is syntax for assignment

EFRB: SSBEERGE

Five instance methods * Explanation

x: xcoord y: ycoord | | set x,y coordinates,
X <- xcoord e.g, ptx:5y:3
y <- ycoord
moveDx: dx Dy: dy | | move point by given amount
X <- dX + X
<-dy +
2 |y| g S return hidden inst var x
v || Ay return hidden inst vary
draw | | draw point on screen

(...code to draw point...)

XIRAIZFR

to superclass Object

Point class
Template

Method dictionary

Point object

Detail: class method shown in
dictionary, but lookup procedure
distinguishes class and instance
methods

5. ColorPoint

new instance
variable

new method

override Point
method

5. ColorPoint

Point object Point clags Template

Method dictionary

ColorPoint object ~ colorPointclass — Template

Method dictionary

