CS 242 2012

Object typing and subtypes

Reading
Chapter 10, section 10.2.3
Chapter 11, sections 11.3.2 and 11.7
Chapter 12, section 12.4
Chapter 13, section 13.3

Subtyping and Inheritance

Interface

— The external view of an object

Subtyping

— Relation between interfaces

Implementation

— The internal representation of an object

Inheritance

— Relation between implementations

Example: Smalltalk Point class

class name Point
super class Object
class var pi
instance var X Yy

class messages and methods

{...names and code for methods...)

instance messages and methods

{...names and code for methods...)

Subclass: ColorPoint

add instance
variable

add method

override Point
method

Object Interfaces

* |Interface

The messages understood by an object
 Example: point

X:y: set x,y coordinates of point

moveDx:Dy: method for changing location

X returns x-coordinate of a point

y returns y-coordinate of a point

draw display point in x,y location on screen

* The interface of an object is its type

Subtyping

* If interface A contains all of interface B,
then A objects can also be used B objects.

Point Colored_point
X:y: X:y:
moveDx:Dy: moveDx:Dy:
X X
y y
draw color

draw

Colored_point interface contains Point
Colored_point is a subtype of Point

Implicit Object types — Smalltalk/JS

* Each object has an interface
— Smalltalk: set of instance methods declared in class
— Example:
Point { x:y:, moveDx:Dy:, x, y, draw}
ColorPoint {x:y:, moveDx:Dy:, x, vy, color, draw}

— This is a form of type
Names of methods, does not include type/protocol of arguments

* Object expression and type

— Send message to object
p draw p x:3y:4
g color g moveDx: 5 Dy: 2
— Expression OK if message is in interface

Subtyping

e Relation between interfaces

— Suppose expression makes sense
p msg:pars -- OKif msgisin interface of p

— Replace p by q if interface of g contains interface of p

* Subtyping
— If interface is superset, then a subtype
— Example: ColorPoint subtype of Point
— Sometimes called “conformance”

Can extend to more detailed interfaces that include types of parameters

Subtyping and Inheritance

* Smalltalk/JavaScript subtyping is implicit
— Not a part of the programming language
— Important aspect of how systems are built
* Inheritance is explicit

— Used to implement systems
— No forced relationship to subtyping

Smalltalk Collection Hierarchy

w iSEmpty, size, includes: , ...
at:
Indexed
Set add:

Updatable at:Put: - remove:

Sorted collection) SOrtBlock:
associationAt:

replaceFrom:to:with:

Subtyping
_____ Inheritance

C++ Subtyping

* Subtyping in principle

— A <: Bif every A object can be used without type error
whenever a B object is required

— Example:
Point: int getX();
void move(int); J
ColorPoint: int getX();)
int getColor();
void move(int);
void darken(int tint); |

e C++: A<:Bifclass A has public base class B

> Public members

» Public members

Implementation of subtyping

* No-op
— Dynamically-typed languages
— C++ object representations (single-inheritance only)
circle *c = new Circle(p,r);
shape *s = c; // s points to circle c
* Conversion
— C++ object representations w/multiple-inheritance
C *pc = new C;
B *pb = pc; (A (B

A *pa = p; @
// may point to different position in object

Smalltalk/JavaScript Representation

Point object POintCﬁS Template o 4
ethod dictionary
c—/ o— X
2 o// y newX:Y: —
3 o— draw — > "
move — |

ColorPoint object ColorPoirjt class Template

Method dictionary

4 -——/ y newX:Y.C: .//
5 — color color >
— draw -

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ.

C++ Run-time representation

Point object Point vtable Code for move
vptr

X 3
ColorPoint object ColorPoint vtable Code for move
vptr

X 5 N

Code for darken
C blue \,

Data at same offset Function pointers at same offset

C++: virtual function lookup

Point object Point vtable Code for move
vptr

X 3
ColorPoint object ColorPoint vtable Code for move
vptr

X 5 e
Code for darken
C blue \

Point p = new Pt(3);
p->move(2); /] (*(p->vptr[0]))(p,2)

C++: virtual function lookup, part 2

Point object Point vtable Code for move
vptr

X 3
ColorPoint object ColorPoint vtable Code for move
vptr

X 5 B
- [Blue \C@e for darken

Point cp = new ColorPt(5,blue);
cp->move(2); /] (*(cp->vptr[0]))(cp,2)

C++ Multiple Inheritance - ®

C object C-as-A vtbl
t R & C::f 0
pa, pC * vptr >
O i ~ A object
| | Adata | | C-as-B vtbl
b " vptr > ‘.
P ° ~ B object &B:g | O
Bdata | | &C::f | &
C data

e Offset 0 in vtbl is used in call to pb->f, since C::f may refer to A
data that is above the pointer pb

e (Call to pc->g can proceed through C-as-B vtbl

Independent classes not subtypes

class Point { class ColorPoint {
public: public:
int getX(); int getX();

void move(int); void move(int);

int getColor();

protected:
orivate: void darken(int);
. protected:
b private:
5

e C++ does not treat ColorPoint <: Point as written

— Need public inheritance ColorPoint : public Point
— Why??

Why C++ design?

* Client code depends only on public interface

— In principle, if ColorPoint interface contains Point
interface, then any client could use ColorPoint in place
of point

— However -- offset in virtual function table may differ
— Lose implementation efficiency (like Smalltalk)

* Without link to inheritance
— Subtyping leads to loss of implementation efficiency

* Also encapsulation issue:

— Subtyping based on inheritance is preserved under
modifications to base class ...

Recurring subtype issue: downcast

* The Simula type of an object is its class
* Simula downcasts are checked at run-time
 Example: N (A)

class A(...); ... up down

A class B(...); ... @ G \’

ref (A) a :- new A(...)
ref (B) b :- new B(...)
a:=b /* OK since B is subclass of A */

b:=a /* compiles, but run-time test */

Function subtyping

e Subtyping principle

— A <: B if an A expression can be safely used in any
context where a B expression is required

e Subtyping for function results
—IfA<:B, then C—>A <: C—>B

e Subtyping for function arguments
—IfA<:B, then B—>C <: A—>C

* Terminology
— Covariance: A <: B implies F(A) <: F(B)
— Contravariance: A <:Bimplies F(B) <: F(A)

Examples

* |f circle <: shape, then

circle — shape
circle — circle shape — shape

N

shape — circle

C++ compilers recognize limited forms of function subtyping

Subtyping with functions

class Point { class ColorPoint: public Point {
public: public: / Inherited, but repeated
int getX(); int getX(); here for clarity
virtual @oint *mpve(int); int getColor();

nove(int);

protected: . :
Vat void darken(int);
rivate:
P protected:
Z private:
Iy

* |n principle: colorpPoint <: Point

* In practice: Thisis covariant case; contravariance is another story

Subtyping principles (recap)

* “Width” subtyping for object types
i >
[ml:nl, ceey ml TEI] <: [mltﬂl, ceey mJ TCJ]
i .
* “Depth” subtyping for object types J

GI <: TCi

[Mmy:0q, ..., mioy] < [mqimy, ..., m;: nj]

* Function subtyping
o'<:c mwn<m
C—>T <. 0—>7

Subtyping recursive types

* Principle

s<:t = o(s)<: m(t) s not in x(t)
t not in o(s)

type s = o(s) <:typet=m(t)

 Example
cp<:p= {..mv:int>cp}<:{.. mv:int—>p }

type cp ={ ... mv: int—>cp} <:type p =1{ ... mv: int—>p}

Java Types

 Two general kinds of types
— Primitive types — not objects
* Integers, Booleans, etc
— Reference types

e Classes, interfaces, arrays
* No syntax distinguishing Object * from Object
e Static type checking
— Every expression has type, determined from its parts
— Some auto conversions, many casts are checked at run time
— Example, assuming A<: B
* If Ax, then can use x as argument to method that requires B

* IfBx,thencantrytocastxtoA
* Downcast checked at run-time, may raise exception

Classification of Java types

Reference Types

[Object }
| Object[1] | Throwable |
[Shape } [Shape[]} Exception
[Circle } [Square} Circle[]} [Square[] Ypes
user-defined arrays

Primitive Types

[boolean][int][byte] [float][long]

Subtyping

Primitive types
— Conversions: int -> long, double -> long, ...
Class subtyping similar to C++

— Subclass produces subtype
— Single inheritance => subclasses form tree

Interfaces

— Completely abstract classes
* no implementation

— Multiple subtyping
* Interface can have multiple subtypes (implements, extends)

Arrays

— Covariant subtyping — not consistent with semantic principles

Java class subtyping

e Signature Conformance
— Subclass method signatures must conform to superclass

* Three ways signature could vary
— Argument types
— Return type
— Exceptions
— How much conformance is needed in principle?

e Javarule

— Java 1.1: Arguments and returns must have identical types,
may remove exceptions

— Java 1.5: covariant return type specialization

Interface subtyping: example

interface Shape {
public float center();
public void rotate(float degrees);

}

interface Drawable {
public void setColor(Color c);
public void draw();

}

class Circle implements Shape, Drawable {
// does not inherit any implementation
// but must define Shape, Drawable methods

}

Properties of interfaces

* Flexibility
— Allows subtype graph instead of tree

— Avoids problems with multiple inheritance of
implementations (remember C++ “diamond”)

* Cost
— Offset in method lookup table not known at compile

— Different bytecodes for method lookup
* one when class is known

* one when only interface is known
— search for location of method
— cache for use next time this call is made (from this line)

Array types

* Automatically defined
— Array type T[] exists for each class, interface type T
— Cannot extend array types (array types are final)
— Multi-dimensional arrays are arrays of arrays: T[] []

* Treated as reference type
— An array variable is a pointer to an array, can be null
— Example: Circle[] x = new Circle[array_size]
— Anonymous array expression: new int[] {1,2,3, ... 10}
* Every array type is a subtype of Object[], Object
— Length of array is not part of its static type

Array subtyping

* Covariance
—if S<:T then S[]<: T[]

e Standard type error
class A{...}
class B extends A {...}
B[] bArray = new B[10]
Al] aArray = bArray // considered OK since B[] <: Al
aArray[O] = hew A() // compiles, but run-time error

// raises ArrayStoreException

Covariance problem again ...

* Simula problem =
— If A<: B, then A ref <: B ref
— Needed run-time test to prevent bad assignment
— Covariance for assignable cells is not right in principle

* Explanation

— interface of “T reference cell” is
put: T Tref
get: Tref > T

— Remember covariance/contravariance of functions

Xinyu
附注
Assume A <: B
ar: ref A;
br: ref B;
a: A;
b: B;
br = ar;
br := b;
a = !ar;
b is converted to a

Afterthought on Java arrays

Date: Fri, 09 Oct 1998 09:41:05 -0600
From: bill joy
Subject: ...[discussion about java genericity]

actually, java array covariance was done for less noble reasons ...: it made some
generic "bcopy" (memory copy) and like operations much easier to write...

| proposed to take this out in 95, but it was too late (...).
i think it is unfortunate that it wasn't taken out...

it would have made adding genericity later much cleaner, and [array
covariance] doesn't pay for its complexity today.

whnj

Java Exceptions

* Similar basic functionality to other languages
— Constructs to throw and catch exceptions
— Dynamic scoping of handler

 Some differences
— An exception is an object from an exception class

— Subtyping between exception classes
* Use subtyping to match type of exception or pass it on ...
e Similar functionality to ML pattern matching in handler

— Type of method includes exceptions it can throw
* Actually, only subclasses of Exception (see next slide)

Exception Classes

Throwable
”

Runtime
Exception
checked \ i
exceptioné e
User-defined Unchecked exceptions
L exception classes

If a method may throw a checked exception, then exception
must be in the type of the method

Why define new exception types?

* Exception may contain data

— Class Throwable includes a string field so that
cause of exception can be described

— Pass other data by declaring additional fields or
methods

e Subtype hierarchy used to catch exceptions
catch <exception-type> <identifier> { ... }

will catch any exception from any subtype of
exception-type and bind object to identifier

Subtyping concepts

Type of an object represents its interface

Subtyping has associated substitution principle

— If A<: B, then A objects can be used in place of B objects
Implicit subtyping in dynamically typed lang

— Relation between interfaces determines substitutivity
Explicit subtyping in statically typed languages

— Type checker may recognize some subtyping
— |Issues: programming style, implementation efficiency

Covariance and contravariance

— Function argument types reverse order
— Problems with Java array covariance

Principles

Object “width” subtyping

Function covariance, contravariance
Object type “depth” subtyping
Subtyping recursive types

Applications of principles

* Dynamically typed languages

— If A<:Bin principle, then can use A objects in place of B objects
e C++

— Class subtyping only when public base class

— Compiler allows width subtyping, covariant depth subtyping.
(Think about why...)

* Java
— Class subtyping only when declared using “extends”
— Class and interface subtyping when declared
— Compiler allows width subtyping, covariant depth subtyping
— Additional typing issues related to generics

