CiESHERNRIRE

@

ol . Z5BIVIRIE

Int8/16/32/64,
Float32/64,

Bool, String,

Array<T>, VArray<T, S$N>,

Tuple: (T1, T2, .., Tn)

Function: (T1l, T2, .., Tn)

Object

O{/°"\Bn

AT

&k

BEXHKE:

struct

EEE Lo ¥ HEERISR

Nothing

:|_—' H- open class Shape <: Equitable, ToString {
\ —: — . . . 3
- X S open func move(x: Int, y: Int): Unit {

print("Shape moved to ($x, $y)")

}
// Other common methods for shapes
- ZEFNEE /
+ Kfbllava O e move(x: Iney ¥ Int): Unit {
. %%ﬁﬁ%@lﬁﬁ print("Circle moved to ($x, $y)")
. 1= = 4= 4 }
?RDSIZJ:T-]-;’&EK // Other common methods for circles
}
o ﬁﬁﬁ%%ﬁg%B%Any class Rectangle <: Shape { '
Eg?*ﬂ:u func move(x: Int, y: Int): Unit {
== print("Rectangle moved to ($x, $y)")

}

// Other common methods for rectangles

- FrERYclassEBEObject }

Sz let s1: Shape = Circle()
\
Eﬁ?jt let s2: Shape = Rectangle()

sl.move(10, 20) // Should print "Circle moved to (10, 20)"
s2.move(30, 40) // Should print "Rectangle moved to (30, 40)"

ERSEREHE

o YRIK
« RREFBEMAREA
o H{Java®gy “final”

- A "open” XEF(EIMAYZE
Z BT LAdRE

- FrBinterfaceffiSCopen

- 3B "open” method AHEH
override
o ZELIC++BIEREL
- overridexXEFZJLAERE
« InterfacedrpysFiEERRopendy

 DIESIRENH
« open methodAYERXRAEIRKE

open class Shape <:

Equitable, ToString {

open func move(x: Int, y: Int): Unit {
print("Shape moved to ($x, $y)")

}

// Other common methods for shapes

}

class Circle <:

override func move(x: Int, y:

Shape {

Int): Unit {

print("Circle moved to ($x, $y)")

}

// Other common methods for circles

}

class Rectangle <: Shape {

override func move(x: Int, y:

Int): Unit {

print("Rectangle moved to ($x, $y)")

}

// Other common methods for rectangles

}

let s1: Shape
let s2: Shape
sl.move(10, 20)
s2.move (30, 40)

Circle()
Rectangle()

// Should print "Circle moved to (10, 20)"

// Should print

"Rectangle moved to (30, 40)"

ERSEREHE

» Interface o interface Comparable<T> {
- (GRHEER func 1t(other: T): Bool
- {BeJLR{HdefaultsCI func ge(other: T): Bool {
o ZUEIR[]ER return !1t(other)
+ ZA\Ninterfacechx TR FEL, }
BENREEI — wiFkiE // Other comparison methods can be defined here

=
« Constructor
. initEE, TS class MyClass <: Comparable<MyClass> {
- EEIEENESavasil override func lt(other: MyClass): Bool {
 Finalizer // Implement less-than logic here
. ~init return true // Placeholder implementation
« RaeiFthispbi®
e

interface I {
func m(): Int

class C <: B {
let z: Int = 30 code
}

class A {
let x: Int = 10
open func foo(): Int {
return x + 1

m
open func bar(): Int {

return foo() + 3

} A::foo
}

override func foo(): Int {
return x + 2 vtable?2
}

}

foo
class B <: A, I {

let y: Int = 20

open func baz(): Int { vtable1

return x + 3 ke valtue

}

override func m(): Int { .
return y + 1 ObJeCt C()

J typeinfo*

Name

typeKind

vtable*

