
仓颉语言面向对象编程

仓颉：多范式编程
Any

Int8/16/32/64,

Float32/64,

Bool, String,

Array<T>, VArray<T, $N>, …

Tuple: (T1, T2, …, Tn)

Function: (T1, T2, …, Tn) -> Tr

自定义类型：
struct

自定义类型：
enums

I1 In…

I11 I1n… …

…… …
O1 On…

O11 O1n… …

…… …

Object

接口

类

Nothing
函数式 命令式 面向对象

面向对象特性

• 类和接口
• 类似Java
• 类采用单继承
• 接口支持多继承

• 所有类型都是Any
的子类型

• 所有的class都是Object
的子类

open class Shape <: Equitable, ToString {
open func move(x: Int, y: Int): Unit {

print("Shape moved to ($x, $y)")
}
// Other common methods for shapes

}

class Circle <: Shape {
func move(x: Int, y: Int): Unit {

print("Circle moved to ($x, $y)")
}
// Other common methods for circles

}

class Rectangle <: Shape {
func move(x: Int, y: Int): Unit {

print("Rectangle moved to ($x, $y)")
}
// Other common methods for rectangles

}

let s1: Shape = Circle()
let s2: Shape = Rectangle()
s1.move(10, 20) // Should print "Circle moved to (10, 20)"
s2.move(30, 40) // Should print "Rectangle moved to (30, 40)"

面向对象特性

• 继承
• 类缺省不能被继承

• 类似Java中的 “final”

• 用“open”关键字修饰的类
才可以继承

• 所有interface确实open

• 只有“open” method 才能被
override

• 类似C++的虚函数

• override关键字可以省略

• Interface中的方法都是open的

• 动态派遣机制
• open method的调用采用动态派遣

open class Shape <: Equitable, ToString {
open func move(x: Int, y: Int): Unit {

print("Shape moved to ($x, $y)")
}
// Other common methods for shapes

}

class Circle <: Shape {
override func move(x: Int, y: Int): Unit {

print("Circle moved to ($x, $y)")
}
// Other common methods for circles

}

class Rectangle <: Shape {
override func move(x: Int, y: Int): Unit {

print("Rectangle moved to ($x, $y)")
}
// Other common methods for rectangles

}

let s1: Shape = Circle()
let s2: Shape = Rectangle()
s1.move(10, 20) // Should print "Circle moved to (10, 20)"
s2.move(30, 40) // Should print "Rectangle moved to (30, 40)"

面向对象特性

• Interface
• 仅提供方法签名

• 但可以提供default实现

• 多继承问题
• 多个interface中对于同名函数，

有多个缺省实现 —— 编译报错

• 其他
• Constructor

• init函数，可以重载

• 调用顺序规定与Java类似

• Finalizer
• ~init

• 不允许this逃逸

• 封装

interface Comparable<T> {
func lt(other: T): Bool
func ge(other: T): Bool {

return !lt(other)
}
// Other comparison methods can be defined here

}

class MyClass <: Comparable<MyClass> {
override func lt(other: MyClass): Bool {

// Implement less-than logic here
return true // Placeholder implementation

}
}

interface I {
func m(): Int

}

class A {
let x: Int = 10
open func foo(): Int {

return x + 1
}

}

class B <: A, I {
let y: Int = 20

open func baz(): Int {
return x + 3

}

override func m(): Int {
return y + 1

}
}

class C <: B {
let z: Int = 30

override func foo(): Int {
return x + 2

}

open func bar(): Int {
return foo() + 3

}
}

code

typeinfo*

x: 10

y: 20

z: 30

I

A

B

C

m

foo

baz

bar

I::m

A::foo

B::m

B::baz

C::foo

C::bar

name

typeKind

…

vtable*

…

vtable1

object C()

typeinfo

vtable2

valuekey

