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 J Koskinen, Metaprogramming in C++, Sections 2 – 5 

 Gilad Bracha, Generics in the Java Programming Language 



Questions 

• If subtyping and inheritance are so great, why 
do we need type parameterization in object-
oriented languages? 

 

• The great polymorphism debate 
– Subtype polymorphism 

• Apply f(Object x) to any  y : C <: Object 

– Parametric polymorphism 
• Apply  generic <T> f(T x) to any y : C 

Do these serve similar or different purposes? 
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Polymorphism vs Overloading 

• Parametric polymorphism 
– Single algorithm may be given many types 
– Type variable may be replaced by any  type 
– f :: tt   => f :: IntInt,   f :: BoolBool, ...    

• Overloading 
– A single symbol may refer to more than one algorithm 
– Each algorithm may have different type 
– Choice of algorithm determined by type context 
– Types of symbol may be arbitrarily different 
– + has types  int*intint, real*realreal, ... 



Polymorphism: Haskell vs C++ 

• Haskell polymorphic function 

– Declarations (generally) require no type information 

– Type inference uses type variables 

– Type inference substitutes for variables as needed to 
instantiate polymorphic code 

• C++ function template 

– Programmer declares argument, result types of fctns 

– Programmers use template, explicit type parameters  

– Function application: type checker does instantiation 



Example: swap two values 

• Haskell 
swap :: (IORef a, IORef a) -> IO () 

swap (x,y) = do { 

     val_x <- readIORef x; val_y <- readIORef y; 

     writeIORef y val_x;   writeIORef x val_y; 

     return () } 

• C++ 
template <typename T> 

void swap(T& x, T& y){ 

      T tmp = x;  x=y;  y=tmp; 

} 

 
Haskell, C++ polymorphic functions both swap two values of 

any type, but they are compiled very differently 



Implementation 

• Haskell 
– Swap is compiled into one function 

– Typechecker determines how function can be used 

• C++ 
– Swap is instantiated at a form of compile time 

– Separate copy of compiled code for each type of use 

• Why the difference? 
– Haskell reference cell is passed by pointer, local  

variables are pointers to values on the heap 

– C++ arguments passed by reference (pointer), but 
local x is on stack and its size depends on its type 



Implicit constraints on type parameter  

• Example: polymorphic sort function 

template <typename T> 

void sort( int count, T * A[count] ) { 

 for (int i=0; i<count-1; i++) 

     for (int j=i+1; j<count-1; j++) 

   if (A[j] < A[i]) swap(A[i],A[j]); 

} 

• How does instantiation depend on type T? 
• Indexing into array 

• Meaning and implementation of < 
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Partial specialization 

• Example: general swap can be inefficient 
template <class T>  

      void swap ( T& a, T& b ) { T c=a; a=b; b=c; } 

• Specialize general template 
template <class T>  

      void swap(vector<T>&, vector<T>&); 

// implement by moving pointers in vector headers in const time 

• Advantage 
– Use better implementation for specific kinds of types 

– Intuition: “overloaded” template 

– Compiler chooses most specific applicable template 

 
 

 



Another example 

/* Primary template */ 
template <typename T> class Set { 

// Use a binary tree 

}; 

/* Full specialization */ 
template <> class Set<char> { 

// Use a bit vector 

}; 

/* Partial specialzation */ 
template <typename T> class Set<T*> { 

// Use a hash table 

}; 



C++ Template implementation 

• Compile-time instantiation 
– Compiler chooses template that is best match 

• There can be more than one applicable template 

– Template instance is created 
• Similar to syntactic substitution of parameters (β-reduction) 

• Can be done after parsing, etc. (we will ignore details) 

– Overloading resolution  after  substitution 

• Limited forms of “separate compilation” 
– Overloading, data size restrict separate compilation 

– Several models – details tricky, not needed for CS242 
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Standard Template Library for C++ 

• Many generic abstractions 

– Polymorphic abstract types and operations 

• Useful for many purposes 

– Excellent example of generic programming 

• Efficient running time (not always space efficient) 

• Written in C++ 

– Uses template mechanism and overloading 

– Does not  rely on objects  

Architect: Alex Stepanov, 

previous work with D Musser … 



Main entities in STL 

• Container: Collection of typed objects 
– Examples: array, list, associative dictionary, ... 

• Iterator:   Generalization of pointer or address 

• Algorithm 

• Adapter:  Convert from one form to another 
– Example: produce iterator from updatable container 

• Function object: Form of closure  

• Allocator: encapsulation of a memory pool 
– Example: GC memory, ref count memory, ... 



Example of STL approach 

• Function to merge two sorted lists 

– merge : range(s)  range(t)  comparison(u)  

                 range(u) 

   This is conceptually right, but not STL syntax 

• Basic concepts used 

– range(s) - ordered “list” of elements of type s, given 
by pointers to first and last elements 

– comparison(u) - boolean-valued function on type u 

– subtyping - s and t must be subtypes of u  



How merge appears in STL 

• Ranges represented by iterators 

– iterator is generalization of pointer 

– supports ++  (move to next element) 

• Comparison operator is object of class Compare 

• Polymorphism expressed using template 
template < class InputIterator1, class InputIterator2,  

                      class OutputIterator, class Compare > 

OutputIterator merge(InputIterator1 first1, InputIterator1 last1, 

                     InputIterator2 first2, InputIterator2 last2, 

                         OutputIterator result, Compare comp) 



Comparing STL with other libraries 

• C: 

 qsort( (void*)v, N, sizeof(v[0]), compare_int ); 

• C++, using raw C arrays: 

 int v[N]; 

 sort( v, v+N ); 

• C++, using a vector class: 

 vector v(N); 

 sort( v.begin(), v.end() ); 



Efficiency of STL   

• Running time for sort 

     N = 50000 N = 500000  

C     1.4215 18.166  

C++ (raw arrays)  0.2895  3.844  

C++ (vector class) 0.2735  3.802  

 

• Main point 

– Generic abstractions can be convenient and efficient ! 

– But watch out for code size if using C++ templates… 
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C++ Template Metaprogramming 

• Explicit parametric polymorphism 
• Maximal typing flexibility  

– Allow template use whenever instance of template will compile 

• Specialization and partial specialization 
– Compiler chooses best match among available templates 

• Allow different kinds of parameters 
– Type parameters, template parameters, and non-type 

parameters (integers, …) 

• Support mixins 
– Class templates may inherit from a type parameter 

• Support template meta-programming techniques 
– Conditional compilation, traits, … 
– See books, courses, web sites  (Keith Schwarz’ CS106L) 



Metaprogramming example 

template<int N> struct Factorial { 

 enum{ value = Factorial<N-1>::value * N}; 

}; 

template<> struct Factorial<0>{ 

 enum{value = 1}; 

}; 

int main(){ 

 char array[Factorial<4>::value]; 

 std::cout << sizeof(array); 

} 

Reference: J Koskinen, Metaprogramming in C++,  

http://www.cs.tut.fi/~kk/webstuff/MetaprogrammingCpp.pdf 



Policy Class Example  

• Policy class 
– A policy class implements a particular behavior 

• Sample code that we will parameterize by policies 
template <typename T> 

class Vector{ 

 public: 

  /* ... ctors, dtor, etc. */ 

  T& operator[] (size_t); 

  const T& operator[] (size_t) const; 

  void insert(iterator where, const T& what); 

  /* ... etc. ... */ 

}; 



Vector template with policies 

template <typename T, 
                typename RangePolicy, 
                typename LockingPolicy> 
class Vector : public RangePolicy, 
                    public LockingPolicy 
… 
T& Vector<T, RangePolicy, LockingPolicy>:: 
operator[] (size_t position){ 
  LockingPolicy::Lock lock; 
  RangePolicy::CheckRange(position, this->size); 
  return this->elems[position]; 
} 

Policy classes are 
template parameters 

Template parameters 
are base classes for 
multiple inheritance 

 Lock using locking policy 

Check range using range policy 

Class parameters used as base classes are sometimes called “mixins” 



Sample range policy 

class ThrowingErrorPolicy{ 

 protected: 

     ~ThrowingErrorPolicy() {} 

 static void CheckRange(size_t pos, size_t numElems){ 

     if(pos >= numElems) 

     throw std::out_of_bounds("Bad!"); 

 } 

}; 

 

Alternate: log error without raising an exception 



Many other metaprogramming ideas 

• Policy-based class design 

• Type lists and type selection 

• Combining metaprogramming  

    and design patterns 
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Java Generic Programming 

• Java has class Object 
– Supertype of all object types 

– This allows “subtype polymorphism” 
• Can apply operation on class T to any subclass S <: T 

• Java 1.0 – 1.4  did not have generics  
– No parametric polymorphism 

– Many considered this the biggest deficiency of Java 

• Java type system does not let you “cheat” 
– Can cast “down” from supertype to subtype 

– Cast is checked at run time 



Example generic construct: Stack 

• Stacks possible for any type of object 
– For any type t, can have type stack_of_t 
– Operations push,  pop work for any type 

• In C++, write generic stack class 
  template <type t> class Stack { 

   private: t data;  Stack<t> * next; 
   public: void    push (t* x) { … } 
                      t*  pop   (     ) { … }  
  }; 
 

• What can we do in Java 1.0? 



Java 1.0     vs      Generics 

class Stack { 

  void push(Object o)  { ... } 

  Object pop() { ... } 

  ...} 

 

String s = "Hello"; 

Stack st = new Stack();  

... 

st.push(s); 

... 

s = (String) st.pop(); 

class Stack<A> { 

  void push(A a) { ... } 

  A pop() { ... } 

  ...} 

 

String s = "Hello"; 

Stack<String> st =  

        new  Stack<String>(); 

st.push(s); 

... 

s = st.pop(); 



Why no generics in early Java ? 

• Many proposals 

• Basic language goals seem clear 

• Details take some effort to work out 
– Exact typing constraints 

– Implementation  
• Existing virtual machine? 

• Additional bytecodes? 

• Duplicate code for each instance? 

• Use same code (with casts) for all instances 

Java Community proposal (JSR 14) incorporated into Java 1.5 



JSR 14 Java Generics   (Java 1.5, “Tiger”)  

• Adopts syntax on previous slide 

• Adds auto boxing/unboxing 

User conversion                    Automatic conversion 

Stack<Integer> st =  

     new  Stack<Integer>(); 

st.push(new Integer(12)); 

... 

int i = (st.pop()).intValue(); 

Stack<Integer> st =  

     new  Stack<Integer>(); 

st.push(12); 

... 

int i = st.pop(); 
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Java generics are type checked 

• A generic class may use operations on objects of 
a parameter type 

– Example: PriorityQueue<T> …     if  x.less(y) then … 

• Two possible solutions 

– C++:  Compile and see if operations can be resolved 

– Java: Type check and compile generics independently 

• May need additional information about type parameter 

– What methods are defined on parameter type? 

– Example: PriorityQueue<T extends ...>  



Example 

• Generic interface 

  

 

 

 

• Generic class implementing Collection interface 
 class LinkedList<A> implements Collection<A> { 

     protected class Node { 

         A elt; 

         Node next = null; 

         Node (A elt) { this.elt = elt; } 

     } 

     ... 

 } 

interface Iterator<E> { 

        E next();  

        boolean hasNext(); 

} 

interface Collection<A> { 

        public void add (A x); 

        public Iterator<A> iterator (); 

} 



Wildcards 

• Example 
 void printElements(Collection<?> c) { 

     for (Object e : c) 

     System.out.println(e); 

 } 

• Meaning: Any representative from a family of types 

– unbounded wildcard      ?           
• matches all types 

– lower-bound wildcard    ? extends Supertype 
• matches all types that are subtypes of Supertype 

– upper-bound wildcard    ? super Subtype 
• matches all types that are supertypes of Subtype 



Type concepts for understanding Generics 

• Parametric polymorphism  
– max : t  ((t × t)  bool)  ((t × t)  t) 

 

   

• Bounded polymorphism 
– printString : t  <: Printable . t  String 

 

 

• F-Bounded polymorphism 
–  max : t  <:  Comparable (t)  . t × t  t  

given lessThan function return max of two arguments 

for every subtype t of Printable  function from t to String 

for every subtype t of …  return max of object and argument 



F-bounded subtyping 

• Generic interface 

interface Comparable<T>{ public int compareTo(T arg);} 
   x.compareTo(y)  =  negative, 0, positive   if  y  is < = >  x 

• Subtyping 

interface A { public    int compareTo(A arg);  

                           int  anotherMethod (A arg); … } 

<: 

interface Comparable<A> 

           =          { public int compareTo(A arg);} 



Example static max method 

• Generic interface 
interface Comparable<T> { public int compareTo(T arg); } 

 

• Example 
public static <T extends Comparable<T>> T max(Collection<T> coll) {  

        T candidate = coll.iterator().next();  

        for (T elt : coll) {  

              if (candidate.compareTo(elt) < 0) candidate = elt;  

        }  

        return candidate;  

} 

                        candidate.compareTo :  T  int 

 



This would typecheck without F-bound … 

• Generic interface 
interface Comparable<T> { public int compareTo(T arg); … } 

 

• Example 
public static <T extends Comparable<T>> T max(Collection<T> coll) {  

        T candidate = coll.iterator().next();  

        for (T elt : coll) {  

              if (candidate.compareTo(elt) < 0) candidate = elt;  

        }  

        return candidate;  

} 

                        candidate.compareTo :  T  int 

 

Object 

Object 

How could you write an implementation of this interface? 



Generics are not co/contra-variant 

• Array example (review) 

   Integer[] ints = new Integer[] {1,2,3};  

   Number[] nums = ints;  

   nums[2] = 3.14; // array store -> exception at run time 

• List example 

   List<Integer> ints = Arrays.asList(1,2,3);  

   List<Number> nums = ints; // compile-time error 

– Second does not compile because  

             List<Integer>   <:     List<Number> 

 



Return to wildcards 

• Recall example 
void printElements(Collection<?> c) { 

     for (Object e : c) 

     System.out.println(e); 

 } 

• Compare to 
void printElements(Collection<Object> c) {  
 for (Object e : c)   
  System.out.println(e); 
} 

– This version is much less useful than the one above  
• Wildcard allows call with kind of collection as a parameter,  
• Alternative only applies to Collection<Object>, not a supertype of 

other kinds of collections! 
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Implementing Generics 

• Type erasure 
– Compile-time type checking uses generics 

– Compiler eliminates generics by erasing them 
• Compile List<T> to List,  T to Object, insert casts 

 

• “Generics are not templates” 
– Generic declarations are typechecked 

– Generics are compiled once and for all 
• No instantiation 

• No code expansions  

 



Implementation Options 

• Two possible implementations 
– Heterogeneous: instantiate generics 
– Homogeneous: translate generic class to standard class 

 
• Example for next few slides: generic list class 

  template <type t> class List { 
   private: t* data; List<t> * next; 
   public: void      Cons (t* x) { … } 
                     t*        Head (     ) { … } 
                      List<t>  Tail   (     ) { … }  
  }; 



“Homogeneous Implementation” 

 Same representation and code for all types of data 

data 

next data 

next       



“Heterogeneous Implementation” 

 Specialize representation, code according to type 

•     

next 

next 

next 

•     

next 



Issues 

• Data on heap, manipulated by pointer    (Java) 
– Every list cell has two pointers, data and next 

– All pointers are the same size 

– We can use the same representation, code for all types 

• Data stored in local variables                     (C++) 
– Each list cell must have space for data 

– Different representation needed for different types 

– Different code if offset of fields is built into code 

• When is template instantiated? 
– Compile- or link-time (C++) 
– Java alternative: class-load-time generics (next few slides) 
– Java Generics: no “instantiation”, but erasure at compile time 
– C# : just-in-time instantiation, with some code-sharing tricks … 



Heterogeneous Implementation for Java 

• Compile generic class  G<param> 
– Check use of parameter type according to constraints 

– Produce extended form of bytecode class file 
• Store constraints, type parameter names in bytecode file 

• Instantiate when class G<actual>  is loaded  
– Replace parameter type by actual class 

– Result can be transformed to ordinary class file 

– This is a preprocessor to the class loader: 
• No change to the virtual machine 

• No need for additional bytecodes 

 

 A heterogeneous implementation is possible, but was not adopted for standard 



Example: Hash Table 

interface Hashable { 
  int HashCode (); 
}; 
 
class HashTable < Key implements Hashable, Value> { 
  void Insert (Key k, Value v) { 
    int bucket = k.HashCode(); 
    InsertAt (bucket, k, v); 
  } 
  …  
}; 



Generic bytecode with placeholders 

void Insert (Key k, Value v) { 
 int bucket = k.HashCode(); 
 InsertAt (bucket, k, v); 
}  
Method void Insert($1, $2) 
 aload_1 
 invokevirtual #6 <Method $1.HashCode()I> 
 istore_3     aload_0    iload_3    aload_1   aload_2  
 invokevirtual #7 <Method HashTable<$1,$2>. 
                               InsertAt(IL$1;L$2;)V> 
 return 



Instantiation of generic bytecode 

void Insert (Key k, Value v) { 
 int bucket = k.HashCode(); 
 InsertAt (bucket, k, v); 
}  
Method void Insert(Name, Integer) 
 aload_1 
 invokevirtual #6 <Method Name.HashCode()I> 
 istore_3     aload_0    iload_3    aload_1   aload_2  
 invokevirtual #7 <Method HashTable<Name,Integer> 
                               InsertAt(ILName;LInteger;)V> 
 return 



Loading parameterized class file 

• Use of  HashTable <Name, Integer>  starts loader 

• Several preprocess steps 

– Locate bytecode for parameterized class, actual types 

– Check the parameter constraints against actual class 

– Substitute actual type name for parameter type 

– Proceed with verifier, linker as usual 

• Can be implemented with ~500 lines Java code 

– Portable, efficient, no need to change virtual machine 



Java 1.5 “Erasure” Implementation  

• Homogeneous implementation 
 
 
 
 

• Algorithm 
– replace class parameter <A> by Object, insert casts 
– if <A extends B>, replace A by B    

• Why choose this implementation? 
– Backward compatibility of distributed bytecode 
– Surprise: sometimes faster because class loading slow 

 

class Stack { 

  void push(Object o)  { ... } 

  Object pop() { ... } 

  ...} 

class Stack<A> { 

  void push(A a) { ... } 

  A pop() { ... } 

  ...} 



Some details that matter 

• Allocation of static variables 
– Heterogeneous: separate copy for each instance 

– Homogenous: one copy shared by all instances 

• Constructor of actual class parameter 
– Heterogeneous: class G<T> …   T x = new T;  

– Homogenous:  new T may just be Object !  
• Create new object of parameter type not allowed in Java 

• Resolve overloading 
– Heterogeneous: resolve at instantiation time (C++) 

– Homogenous: no information about type parameter 



Example 

• This Code is not legal java 

– class C<A> { A id (A x) {...} } 

– class D extends C<String> { 

         Object id(Object x) {...} 

   } 

• Why? 

– Subclass method looks like a different method, 
but after erasure the signatures are the same 
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     Comparison (next slide         )  



Comparison 
Templates Generics 

Type 
parameterization 

Classes and functions may have 
type parameters. 

Classes and methods may have type 
parameters. 

Flexibility Compile-time instantiation 
allows checking and overload 
resolution at compile time.   

Separate compilation using type 
constraints supplied by the 
programmer.   

Specialization Both template specialization 
and partial specialization. 
Compiler chooses the best 
match. 

No specialization or partial 
specialization. 

Non-type 
parameters 

Compile-time instantiation with 
integer parameters; optimize 
code at compile time.  

No compile-time parameters. 

Mixins Class templates may use a type 
parameter as a base class. 

Cannot inherit from type parameters 



Additional links for material not in book 

• Template metaprogramming 
– http://www.cs.tut.fi/~kk/webstuff/MetaprogrammingCpp.

pdf 

• Enhancements in JDK 5 
– http://docs.oracle.com/javase/1.5.0/docs/guide/language/

index.html 

• J2SE 5.0 in a Nutshell  
– http://www.oracle.com/technetwork/articles/javase/j2se1

5-141062.html 

• Generics 
– http://www.angelikalanger.com/GenericsFAQ/JavaGeneric

sFAQ.pdf 



 


