CS 242 2012

Generic programming in OO
Languages

Reading
Text: Sections 9.4.1 and 9.4.3
J Koskinen, Metaprogramming in C++, Sections 2 - 5
Gilad Bracha, Generics in the Java Programming Language

Questions

* |f subtyping and inheritance are so great, why
do we need type parameterization in object-

oriented languages?

* The great polymorphism debate
— Subtype polymorphism
* Apply f(Object x) to any vy : C <: Object
— Parametric polymorphism
* Apply generic<T>f(Tx)toanyy:C
Do these serve similar or different purposes?

Outline

* C++ Templates

mm) Polymorphism vs Overloading
— C++ Template specialization
— Example: Standard Template Library (STL)
— C++ Template metaprogramming

* Java Generics
— Subtyping versus generics

— Static type checking for generics
— Implementation of Java generics

Polymorphism vs Overloading

e Parametric polymorphism
— Single algorithm may be given many types
— Type variable may be replaced by any type
—fut>t =>f: Int>Int, f:: Bool—>Bool, ...

* Overloading
— A single symbol may refer to more than one algorithm
— Each algorithm may have different type
— Choice of algorithm determined by type context
— Types of symbol may be arbitrarily different
— + has types int*int—int, real*real—real, ...

Polymorphism: Haskell vs C++

* Haskell polymorphic function
— Declarations (generally) require no type information
— Type inference uses type variables

— Type inference substitutes for variables as needed to
instantiate polymorphic code

* C++ function template
— Programmer declares argument, result types of fctns
— Programmers use template, explicit type parameters
— Function application: type checker does instantiation

Example: swap two values

e Haskell

swap :: (IORef a, IORef a) -> 10 ()

swap (x,y) = do {
val_x <- readlORef x; val_y <- readlORef y;
writelORef y val_x; writelORef x val_y;
return () }

e C++

template <typename T>
void swap(T& x, T& y){

Ttmp =x; x=y; y=tmp;
}

Haskell, C++ polymorphic functions both swap two values of
any type, but they are compiled very differently

Implementation

e Haskell

— Swap is compiled into one function
— Typechecker determines how function can be used

e C++
— Swap is instantiated at a form of compile time
— Separate copy of compiled code for each type of use

 Why the difference?

— Haskell reference cell is passed by pointer, local
variables are pointers to values on the heap

— C++ arguments passed by reference (pointer), but
local x is on stack and its size depends on its type

Implicit constraints on type parameter

 Example: polymorphic sort function
template <typename T>
void sort(int count, T * A[count]) {
for (int i=0; i<count-1; i++)
for (int j=i+1; j<count-1; j++)
if (Alj] <Ali]) swap(A[il,Alj]);

) 1) 1)

* How does instantiation depend on type T?
e Indexing into array
e Meaning and implementation of <

Outline

* C++ Templates
— Polymorphism vs Overloading

m) C++ Template specialization
— Example: Standard Template Library (STL)
— C++ Template metaprogramming

* Java Generics
— Subtyping versus generics

— Static type checking for generics
— Implementation of Java generics

Partial specialization

 Example: general swap can be inefficient
template <class T>
void swap (T& a, T& b) { T c=a; a=b; b=c; }
* Specialize general template
template <class T>
void swap(vector<T>&, vector<T>&);
// implement by moving pointers in vector headers in const time

 Advantage
— Use better implementation for specific kinds of types

— Intuition: “overloaded” template
— Compiler chooses most specific applicable template

Another example

/* Primary template */
template <typename T> class Set {
// Use a binary tree

Iy

/* Full specialization */
template <> class Set<char> {
// Use a bit vector
Iy

/* Partial specialzation */

template <typename T> class Set<T*> {
// Use a hash table

5

C++ Template implementation

 Compile-time instantiation

— Compiler chooses template that is best match
* There can be more than one applicable template

— Template instance is created
* Similar to syntactic substitution of parameters (B-reduction)
e Can be done after parsing, etc. (we will ignore details)

— Overloading resolution after substitution

* Limited forms of “separate compilation”
— Overloading, data size restrict separate compilation
— Several models — details tricky, not needed for CS242

Outline

* C++ Templates
— Polymorphism vs Overloading
— C++ Template specialization

mmp Example: Standard Template Library (STL)
— C++ Template metaprogramming

* Java Generics
— Subtyping versus generics

— Static type checking for generics
— Implementation of Java generics

Standard Template Library for C++

Many generic abstractions

— Polymorphic abstract types and operations

Useful for many purposes

— Excellent example of generic programming

Efficient running time (not always space efficient)

Written in C++

— Uses template mechanism and overloading

— Does not rely on objects ¥

Architect: Alex Stepanov,

previous work with D Musser ...

Main entities in STL

Container: Collection of typed objects
— Examples: array, list, associative dictionary, ...

Iterator: Generalization of pointer or address
Algorithm

Adapter: Convert from one form to another

— Example: produce iterator from updatable container
Function object: Form of closure

Allocator: encapsulation of a memory pool
— Example: GC memory, ref count memory, ...

Example of STL approach

* Function to merge two sorted lists
— merge : range(s) x range(t) x comparison(u)
— range(u)
This is conceptually right, but not STL syntax
e Basic concepts used

— range(s) - ordered “list” of elements of type s, given
by pointers to first and last elements

— comparison(u) - boolean-valued function on type u
— subtyping - s and t must be subtypes of u

How merge appears in STL

* Ranges represented by iterators
— iterator is generalization of pointer
— supports ++ (move to next element)

* Comparison operator is object of class Compare

* Polymorphism expressed using template
template < class Inputlteratorl, class Inputlterator2,

class Outputlterator, class Compare >
Outputlterator merge(lnputlteratorl firstl, Inputlteratorl last1,
Inputlterator2 first2, Inputlterator2 last2,

Outputlterator result, Compare comp)

Comparing STL with other libraries

e C:

gsort((void*)v, N, sizeof(v[0]), compare_int);
* C++, using raw C arrays:

int vV[N];

sort(v, v+N);
e C++, using a vector class:

vector v(N);

sort(v.begin(), v.end());

Efficiency of STL

* Running time for sort
N =50000 N =500000

C 1.4215 18.166

C++ (raw arrays) 0.2895 3.844

C++ (vector class) 0.2735 3.802
* Main point

— Generic abstractions can be convenient and efficient !
— But watch out for code size if using C++ templates...

Outline

* C++ Templates

— Polymorphism vs Overloading

— C++ Template specialization

— Example: Standard Template Library (STL)
mmp C++ Template metaprogramming

* Java Generics
— Subtyping versus generics

— Static type checking for generics
— Implementation of Java generics

C++ Template Metaprogramming

Explicit parametric polymorphism

Maximal typing flexibility

— Allow template use whenever instance of template will compile
Specialization and partial specialization

— Compiler chooses best match among available templates

Allow different kinds of parameters

— Type parameters, template parameters, and non-type
parameters (integers, ...)

Support mixins
— Class templates may inherit from a type parameter
Support template meta-programming techniques

— Conditional compilation, traits, ...
— See books, courses, web sites (Keith Schwarz’ CS106L)

Metaprogramming example

template<int N> struct Factorial {
enum{ value = Factorial<N-1>::value * N}
b
template<> struct Factorial<0>{
enum{value = 1};
};
int main(){
char array[Factorial<4>::value];
std::cout << sizeof(array);

Reference: J Koskinen, Metaprogramming in C++,
http://www.cs.tut.fi/~kk/webstuff/MetaprogrammingCpp.pdf

Policy Class Example

* Policy class
— A policy class implements a particular behavior

 Sample code that we will parameterize by policies

template <typename T>
class Vector{
public:
/* ... ctors, dtor, etc. */
T& operator(] (size_t);
const T& operator[] (size_t) const;
void insert(iterator where, const T& what);

/* ...etc....*/

Vector template with policies

template <typename T,

typename RangePolicy, 7 Policy classes are
typename LockingPolicy> | template parameters
class Vector : public RangePolicy, 7] Template parameters
public LockingPolicy _;' are base classes for

multiple inheritance
T& Vector<T, RangePolicy, LockingPolicy>::
operator[] (size_t position){
LockingPolicy::Lock lock; 4= | ock using locking policy
RangePolicy::CheckRange(position, this->size);
return this->elems[position]; I

} Check range using range policy

Class parameters used as base classes are sometimes called “mixins”

Sample range policy

class ThrowingErrorPolicy{
protected:
~ThrowingErrorPolicy() {}
static void CheckRange(size_t pos, size_t numElems){
if(pos >= numElems)
throw std::out_of bounds("Bad!");

Alternate: log error without raising an exception

Many other metaprogramming ideas

Policy-based class design Modernc++pesign
* Type lists and type selection [“”
* Combining metaprogramming "":'

and design patterns — I

C++ In-Depth Serles « Bjarne Stroustrup

Outline

* C++ Templates
— Polymorphism vs Overloading
— C++ Template specialization
— Example: Standard Template Library (STL)
— C++ Template metaprogramming

* Java Generics
mm) Subtyping versus generics

— Static type checking for generics
— Implementation of Java generics

Java Generic Programming

e Java has class Object

— Supertype of all object types

— This allows “subtype polymorphism”
e Can apply operation on class T to any subclass S<: T

e Java 1.0 -1.4 did not have generics

— No parametric polymorphism

— Many considered this the biggest deficiency of Java
e Java type system does not let you “cheat”

— Can cast “down” from supertype to subtype
— Cast is checked at run time

Example generic construct: Stack

e Stacks possible for any type of object
— For any type t, can have type stack_of t
— Operations push, pop work for any type

* |In C++, write generic stack class

template <type t> class Stack {
private: t data; Stack<t> * next;
public: void push (t*x)<{ ..}

, t pop (){..%

e What can we do in Java 1.0?

Java 1.0 vs Generics

class Stack { class Stack<A> {
void push(Object o) {... } void push(Aa){... }
Object pop() { ... } A pop(){...}
o} o}
String s = "Hello"; String s = "Hello";
Stack st = new Stack(); Stack<String> st =
new Stack<String>();
st.push(s); st.push(s);

s = (String) st.pop(); s = st.pop();

Why no generics in early Java ?

 Many proposals
* Basic language goals seem clear

e Details take some effort to work out
— Exact typing constraints

— Implementation
 Existing virtual machine?
* Additional bytecodes?
* Duplicate code for each instance?
e Use same code (with casts) for all instances

Java Community proposal (JSR 14) incorporated into Java 1.5

JSR 14 Java Generics (Java 1.5, “Tiger”)

* Adopts syntax on previous slide

User conversion

Adds auto boxing/unboxing

Automatic conversion

Stack<Integer> st =
new Stack<Integer>();
st.push(new Integer(12));

|nt | = (st.pop()).intValue();

Stack<Integer> st =
new Stack<Integer>();
st.push(12);

int i = st.pop();

Outline

* C++ Templates
— Polymorphism vs Overloading
— C++ Template specialization
— Example: Standard Template Library (STL)
— C++ Template metaprogramming

* Java Generics
— Subtyping versus generics

mm) Static type checking for generics
— Implementation of Java generics

Java generics are type checked

* A generic class may use operations on objects of
a parameter type

— Example: PriorityQueue<T> ... if x.less(y) then ...

* Two possible solutions
— C++: Compile and see if operations can be resolved
— Java: Type check and compile generics independently

* May need additional information about type parameter
— What methods are defined on parameter type?
— Example: PriorityQueue<T extends ...>

Example

* @Generic interface

interface Collection<A> { interface Iterator<E> {
public void add (A x); E next();
public Iterator<A> iterator (); boolean hasNext();
})

* Generic class implementing Collection interface
class LinkedList<A> implements Collection<A> {
protected class Node {
A elt;
Node next = null;
Node (A elt) { this.elt = elt; }

Wildcards

 Example
void printElements(Collection<?> c) {
for (Object e : c)
System.out.printin(e);

}
* Meaning: Any representative from a family of types

— unbounded wildcard °?

* matches all types

— lower-bound wildcard ? extends Supertype
 matches all types that are subtypes of Supertype

— upper-bound wildcard ? super Subtype
* matches all types that are supertypes of Subtype

Type concepts for understanding Generics

* Parametric polymorphism

— max : Vt\((t xt) > bool? - ((txt) —>t)

|
given lessThan function return max of two arguments

* Bounded polymorphism

— printString : lVt < Printable’ - String

|
for every subtype t of Printable function from t to String

* F-Bounded polymorphism

— max: VvVt <: Comparable (t) .txt—t
| I
for every subtype t of ... return max of object and argument

F-bounded subtyping

* Generic interface

interface Comparable<T>{ public int compareTo(T arg);}

x.compareTo(y) = negative, 0, positive if y is<=> x
e Subtyping
interface A { public int compareTo(A arg);

int anotherMethod (ﬁ arg); ... }
<:

interface Comparable<A> |
= { public int compareTo(A arg);}

Example static max method

e Genericinterface

interface Comparable<T> { public int compareTo(T arg); }

 Example

public static <T extends Comparable<T>> T max(Collection<T> coll) {
T candidate = coll.iterator().next();
for (T elt : coll) {

if (candidate.compareTo(elt) < 0) candidate = elt;

}

return candidate;

candidate.compareTo: T — int

This would typecheck without F-bound ...

* Generic interface bject
interface Comparable<T> { public int compareTo(T Arg); ... }

 Example
public static <T extends Comparable<T>> T max(Collection<T> coll) {
T candidate = coll.iterator().next();
for (T elt : coll) {
if (candidate.compareTo(elt) < 0) candidate = elt;

}

return candidate;

} bject

candidate.compareTo: T — i

How could you write an implementation of this interface?

Generics are not co/contra-variant

* Array example (review)
Integer[] ints = new Integer[] {1,2,3};
Number[] nums = ints;
nums[2] = 3.14; // array store -> exception at run time

e List example
List<Integer> ints = Arrays.aslList(1,2,3);
List<Number> nums = ints; // compile-time error
— Second does not compile because
List<Integer> ¢ List<Number>

Return to wildcards

* Recall example
void printElements(Collection<?> c) {
for (Object e : c)
System.out.printin(e);

}

* Compareto
void printElements(Collection<Object> c) {
for (Object e : c)
System.out.printin(e);
}
— This version is much less useful than the one above
e Wildcard allows call with kind of collection as a parameter,

e Alternative only applies to Collection<Object>, not a supertype of
other kinds of collections!

Outline

* C++ Templates
— Polymorphism vs Overloading
— C++ Template specialization
— Example: Standard Template Library (STL)
— C++ Template metaprogramming

* Java Generics

— Subtyping versus generics

— Static type checking for generics
mm) Implementation of Java generics

Implementing Generics

* Type erasure
— Compile-time type checking uses generics

— Compiler eliminates generics by erasing them
* Compile List<T> to List, T to Object, insert casts

* “Generics are not templates”
— Generic declarations are typechecked

— Generics are compiled once and for all
* No instantiation
* No code expansions

Implementation Options

 Two possible implementations
— Heterogeneous: instantiate generics
— Homogeneous: translate generic class to standard class

 Example for next few slides: generic list class
template <type t> class List {
private: t* data; List<t> * next;
public: void Cons (t* x){... }
t* Head (){..}
List<t> Tail (){..}

“Homogeneous Implementation”

data /
next | data /

next > o © °

Same representation and code for all types of data

“Heterogeneous Implementation”

%/%/oooo

next next

next

next

Specialize representation, code according to type

Issues

Data on heap, manipulated by pointer (Java)
— Every list cell has two pointers, data and next
— All pointers are the same size
— We can use the same representation, code for all types

Data stored in local variables (C++)
— Each list cell must have space for data
— Different representation needed for different types
— Different code if offset of fields is built into code
When is template instantiated?
— Compile- or link-time (C++)
— Java alternative: class-load-time generics (next few slides)

— Java Generics: no “instantiation”, but erasure at compile time
— C# : just-in-time instantiation, with some code-sharing tricks ...

Heterogeneous Implementation for Java

 Compile generic class G<param>
— Check use of parameter type according to constraints

— Produce extended form of bytecode class file
e Store constraints, type parameter names in bytecode file

* |nstantiate when class G<actual> is loaded
— Replace parameter type by actual class
— Result can be transformed to ordinary class file

— This is a preprocessor to the class loader:

* No change to the virtual machine
* No need for additional bytecodes

A heterogeneous implementation is possible, but was not adopted for standard

Example: Hash Table

interface Hashable {
int HashCode ();

5

class HashTable < Key implements Hashable, Value> {
void Insert (Key k, Value v) {
int bucket = k.HashCode();
InsertAt (bucket, k, v);

Generic bytecode with placeholders

void Insert (Key k, Value v) {
int bucket = k.HashCode();
InsertAt (bucket, k, v);
}
Method void Insert(S1, S2)
aload 1
invokevirtual #6 <Method S1.HashCode()I>
istore. 3 aload 0 iload 3 aload 1 aload 2
invokevirtual #7 <Method HashTable<S1,52>.
InsertAt(ILS1;LS2;)V>
return

Instantiation of generic bytecode

void Insert (Key k, Value v) {
int bucket = k.HashCode();
InsertAt (bucket, k, v);

}

Method void Insert(Name, Integer)
aload 1
invokevirtual #6 <Method Name.HashCode()I>
istore. 3 aload 0 iload 3 aload 1 aload 2
invokevirtual #7 <Method HashTable<Name,Integer>

InsertAt(ILName;LInteger;)V>
return

Loading parameterized class file

 Use of HashTable <Name, Integer> starts loader

* Several preprocess steps
— Locate bytecode for parameterized class, actual types
— Check the parameter constraints against actual class
— Substitute actual type name for parameter type
— Proceed with verifier, linker as usual

* Can be implemented with ~500 lines Java code

— Portable, efficient, no need to change virtual machine

Java 1.5 “Erasure” Implementation

e Homogeneous implementation

class Stack<A> { class Stack {
void push(A a) { ... } ‘ void push(Object o) { ... }
Apop(){..} Object pop() { ... }
L))
* Algorithm

— replace class parameter <A> by Object, insert casts
— if <A extends B>, replace A by B
* Why choose this implementation?

— Backward compatibility of distributed bytecode
— Surprise: sometimes faster because class loading slow

Some details that matter

* Allocation of static variables
— Heterogeneous: separate copy for each instance
— Homogenous: one copy shared by all instances

* Constructor of actual class parameter
— Heterogeneous: class G<T>... Tx=new T,;

— Homogenous: new T may just be Object !
* Create new object of parameter type not allowed in Java

* Resolve overloading
— Heterogeneous: resolve at instantiation time (C++)
— Homogenous: no information about type parameter

Example

* This Code is not legal java
—class C<A>{Aid (Ax){...} }
— class D extends C<String> {
Object id(Object x) {...}
}
e Why?

— Subclass method looks like a different method,
but after erasure the signatures are the same

Outline

e C++ Templates
— Polymorphism vs Overloading
— C++ Template specialization
— Example: Standard Template Library (STL)
— C++ Template metaprogramming

* Java Generics
— Subtyping versus generics

— Static type checking for generics
— Implementation of Java generics

Comparison (next slide mmp)

Comparison

Templates

Generics

Type
parameterization

Classes and functions may have
type parameters.

Classes and methods may have type
parameters.

Flexibility

Compile-time instantiation
allows checking and overload
resolution at compile time.

Separate compilation using type
constraints supplied by the
programmer.

Specialization

Both template specialization
and partial specialization.
Compiler chooses the best
match.

No specialization or partial
specialization.

Non-type Compile-time instantiation with |[No compile-time parameters.
parameters integer parameters; optimize

code at compile time.
Mixins Class templates may use a type [Cannot inherit from type parameters

parameter as a base class.

Additional links for material not in book

Template metaprogramming

— http://www.cs.tut.fi/~kk/webstuff/MetaprogrammingCpp.
pdf

Enhancements in JDK 5

— http://docs.oracle.com/javase/1.5.0/docs/guide/language/
index.html

J2SE 5.0 in a Nutshell

— http://www.oracle.com/technetwork/articles/javase/j2sel
5-141062.html

Generics

— http://www.angelikalanger.com/GenericsFAQ/JavaGeneric
sFAQ.pdf

